DOI QR코드

DOI QR Code

Improvement in the Catalytic Activity of ${\beta}$-Agarase AgaA from Zobellia galactanivorans by Site-Directed Mutagenesis

  • Lee, Seung-Woo (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University) ;
  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University) ;
  • Jang, Min-Kyung (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University) ;
  • Jeon, Myong-Je (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University) ;
  • Jang, Hye-Ji (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University) ;
  • Lee, Sang-Hyeon (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
  • Received : 2011.07.04
  • Accepted : 2011.07.25
  • Published : 2011.11.28

Abstract

In this study, site-directed mutagenesis was performed on the ${\beta}$-agarase AgaA gene from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutant enzymes, S63K, C253I, and S63K-C253I, were 126% (1,757.78 U/mg), 2.4% (33.47 U/mg), and 0.57% (8.01 U/mg), respectively, relative to the wild-type ${\beta}$-agarase AgaA (1,392.61 U/mg) at $40^{\circ}C$. The stability of the mutant S63K enzyme was 125% of the wild-type up to $45^{\circ}C$, where agar is in a sol state. The mutant S63K enzyme produced 166%, 257%, and 220% more neoagarohexaose, and 230%, 427%, and 350% more neoagarotetraose than the wild-type in sol, gel, and nonmelted powder agar, respectively, at $45^{\circ}C$ over 24 h. The mutant S63K enzyme produced 50% more neoagarooligosaccharides from agar than the wild-type ${\beta}$-agarase AgaA from agarose under the same conditions. Thus, mutant S63K ${\beta}$-agarase AgaA may be useful for the production of functional neoagarooligosaccharides.

Keywords

References

  1. Allouch, J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. 2003. The three-dimensional structures of two $\beta$-agarases. J. Biol. Chem. 278: 47171-47180. https://doi.org/10.1074/jbc.M308313200
  2. Allouch, J., W. Helbert, B. Henrissat, and M. Czjzek. 2004. Parallel substrate binding sites in a $\beta$-agarase suggest a novel mode of action on double-helical agarose. Structure. 12: 623- 632. https://doi.org/10.1016/j.str.2004.02.020
  3. Araki, C. 1959. Seaweed polysaccharides, pp. 15-30. In M. L. Wolfrom (ed.). Carbohydrate Chemistry of Substances of Biological Interest. Proceedings of the 4th International Congress of Biochemistry. International Union of Biochemistry and Molecular Biology, London.
  4. Bannikova, G. E., S. A. Lopatin, V. P. Varlamov, B. B. Kuznetsov, I. V. Kozina, M. L. Miroshnichenko, et al. 2008. The thermophilic bacteria hydrolyzing agar: Characterization of thermostable agarase. J. Biol. Chem. Microbiol. 44: 366-369.
  5. Cao, L. 2005. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217-226. https://doi.org/10.1016/j.cbpa.2005.02.014
  6. Duckworth, M. and W. Yaphe. 1971. Structure of agar : Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  7. Fox, R. J. and G. W. Huisman. 2008. Enzyme optimization: Moving from blind evolution to statistical exploration of sequence-function space. Trends Biotechnol. 26: 132-138. https://doi.org/10.1016/j.tibtech.2007.12.001
  8. Groleau, D. and W. Yaphe. 1977. Enzymatic hydrolysis of agar: Purification and characterization of $\beta$-neoagarotetraose hydrolase from Pseudomonas atlantica. Can. J. Microbiol. 23: 672-679. https://doi.org/10.1139/m77-100
  9. Jam, M., D. Flament, J. Allouch, P. Potin, L. Yhion, B. Kloareg, et al. 2005. The endo-$\beta$-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: Two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem. J. 385: 703-713. https://doi.org/10.1042/BJ20041044
  10. Jang, M. K., S. W. Lee, D. G. Lee, N. Y. Kim, K. H. Yu, H. J. Jang, et al. 2010. Enhancement of the thermostability of a recombinant beta-agarase, AgaB, from Zobellia galactanivorans by random mutagenesis. Biotechnol. Lett. 32: 943-949. https://doi.org/10.1007/s10529-010-0237-5
  11. Kohno, T., H. Kitagawa, and T. Hiraga. 1990. Production of hetero-oligosaccharides. pp. 87-105. In Gijutsu, Kenkyu, Kukami (eds.). Shokuhin Sangyo Bioreactor System, Jissen Bioreactor, Tokyo.
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  13. Lee, D. G., M. K. Jang, O. H. Lee, N. Y. Kim, S. A. Ju, and S. H. Lee. 2008. Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 30: 911-918. https://doi.org/10.1007/s10529-008-9634-4
  14. Lee, D. G., G. T. Park, N. Y. Kim, E. J. Lee, M. K. Jang, Y. G. Shin, et al. 2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1925-1932. https://doi.org/10.1007/s10529-006-9171-y
  15. Morley, K. L. and R. J. Kazlauskas. 2005. Improving enzyme properties: When are closer mutations better? Trends Biotechnol. 23: 231-237. https://doi.org/10.1016/j.tibtech.2005.03.005
  16. Ohta, Y., Y. Hatada, Y. Nogi, Z. Li, S. Ito, and K. Horikoshi. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 $\beta$-agarase from a deep-sea Microbulbiferlike isolate. Appl. Microbiol. Biotechnol. 66: 266-275. https://doi.org/10.1007/s00253-004-1757-5
  17. Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular Cloning, pp. 23-38. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  18. Shi, C., X. Lu, C. Ma, Y. Ma, X. Fu, and W. Yu. 2008. Enhancing the thermostability of a novel $\beta$-agarase AgaB through directed evolution. Appl. Biochem. Biotechnol. 151: 51-59. https://doi.org/10.1007/s12010-008-8169-4
  19. Siehl, D. L., L. A. Castle, R. Gorton, and R. J. Keenan. 2007. The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J. Biol. Chem. 282: 11446-11455. https://doi.org/10.1074/jbc.M610267200
  20. Somogi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
  21. Sylvestre, J., H. Chautard, F. Cedrone, and M. Delcourt. 2006. Directed evolution of biocatalysts. Org. Process Res. Dev. 10: 562-571. https://doi.org/10.1021/op050243h

Cited by

  1. Cloning, Expression, and Characterization of a Glycoside Hydrolase Family 118 ${\beta}$-Agarase from Agarivorans sp. JA-1 vol.22, pp.12, 2011, https://doi.org/10.4014/jmb.1209.09033
  2. Agarase의 분류, 기원, 확보, 활성파악, 분리정제, 생산 및 응용 vol.22, pp.2, 2011, https://doi.org/10.5352/jls.2012.22.2.266
  3. 신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사 vol.44, pp.2, 2011, https://doi.org/10.4014/mbl.1511.11007
  4. Cloning, Expression, and Characterization of a Thermotolerant β-agarase from Simiduia sp. SH-4 vol.23, pp.5, 2018, https://doi.org/10.1007/s12257-018-0072-4
  5. 한천분해세균 Agarivorans sp. KC-1의 분리 및 내열성 β-아가라제의 특성 규명 vol.28, pp.9, 2018, https://doi.org/10.5352/jls.2018.28.9.1056
  6. 한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등 vol.30, pp.3, 2011, https://doi.org/10.5352/jls.2020.30.3.304