Characteristics of Bacteriocin Produced by Lactococcus lactis ET45 Isolated from Kimchi

김치에서 분리한 Lactococcus lactis ET45가 생산하는 박테리오신의 특성

  • Jeong, Seong-Yeop (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Chan-Sun (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Nack-Shick (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yang, Hee-Jong (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Cha-Young (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Byoung-Dae (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Dae-Ook (Department of Biochemistry and Health Science, Changwon National University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Min-Soo (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 정성엽 (한국생명공학연구원 생물산업공정센터) ;
  • 박찬선 (한국생명공학연구원 생물산업공정센터) ;
  • 최낙식 (한국생명공학연구원 생물산업공정센터) ;
  • 양희종 (한국생명공학연구원 생물산업공정센터) ;
  • 김차영 (한국생명공학연구원 생물산업공정센터) ;
  • 윤병대 (한국생명공학연구원 생물산업공정센터) ;
  • 강대욱 (창원대학교 보건의과학과) ;
  • 유연우 (아주대학교 분자과학기술학과) ;
  • 김민수 (한국생명공학연구원 생물산업공정센터)
  • Received : 2011.01.05
  • Accepted : 2011.03.02
  • Published : 2011.03.31

Abstract

Bacteriocin-producing lactic acid bacterium having antagonistic activity against Bacillus cereus, was isolated from Kimchi. The selected strain was identified as Lactococcus lactis by the Bergey's manual and 16S rDNA analysis, and named as L. lactis ET45. The bacteriocin was stable in the pH range 3.0-11.0. The bacteriocin was active over a wide temperature range from $40^{\circ}C$ to $121^{\circ}C$. Optimal culture condition for producing bacteriocin was obtained by growing the cells on MRS medium at pH 7.5 and $30^{\circ}C$ for 18 h. Antibacterial activity of the bacteriocin was completely disappeared by proteinase K, and this means that bacteriocin is a proteinous substance. The molecular weight of bacteriocin was estimated to be about 4.5 kDa by tricine sodium dodecyl sulfate polyacryamide gel electrophoresis (TSDS-PAGE).

Bacillus cereus에 항균활성을 갖는 박테리오신을 생산하는 유산균을 김치로부터 분리하였다. 선별한 균주는 Bergey's manual, 16S rDNA 분석을 통하여 Lactococcus lactis로 동정되었으며, L. lactis ET45로 명명하였다. ET45가 생산하는 박테리오신은 pH 3.0-11.0까지 안정하였고, 열 안정성 테스트결과 $40-121^{\circ}C$까지 안정함을 확인하였다. 박테리오신의 생산을 위한 최적 조건으로 MRS 액체배지에서 초기 pH 7.5, $30^{\circ}C$에서 18시간 배양하였을 때 최대생산을 보였다. 박테리오신의 항균활성이 proteinase K의 처리로 활성이 소실되어, 박테리오신이 단백질성 물질임을 확인하였다. 박테리오신의 분자량은 tricine sodium dodecyl sulfate polyacryamide gel electrophoresis (TSDS-PAGE)를 통하여 약 4.5 kDa임을 확인하였다.

Keywords

References

  1. Atrih, A., N. Rekhif, M. Michel, and G. Lefebvre. 1993. Detection of bacteriocins produced by Lactobacillus plantarum strains isolated from different foods. Microbios 75, 117-123.
  2. Bang, B.H., J.S. Seo, and E.J. Jeong. 2008. A method for maintaining good Kimchi quality during fermentation. Kor. J. Food. Nutr. 21, 51-55.
  3. Cho, M., E.K. Bae, S.D. Ha, and J. Park. 2005. Application of natural antimicrobials to food industry. Food Sci. Indus. 38, 36-45.
  4. Choi, H.J., C.I. Cheigh, S.B. Kim, and Y.R. Pyun. 2000. Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J. Appl. Microbiol. 88, 563-571. https://doi.org/10.1046/j.1365-2672.2000.00976.x
  5. Choi, E.M., Y.H. Kim, S.J. Park, Y.I. Kim, Y.M. Ha, and S.K. Kim. 2004. Characterization of bacteriocin, lacticin YH-10, produced by Lactococcus lactis subsp. lactis YH-10 isolated from Kimchi. J. Life Science 14, 683-688. https://doi.org/10.5352/JLS.2004.14.4.683
  6. Choi, H.J., H.S. Lee, S. Her, D.H. Oh, and S.S. Yoon. 1999. Partial characterization and cloning of leuconocin J, a bacteriocin produced by Leuconostoc sp. J2 isolated from the Korean fermented vegetable Kimchi. J. Appl. Microbiol. 86, 175-181. https://doi.org/10.1046/j.1365-2672.1999.00471.x
  7. Cleveland, J., T.J. Montville, I.F. Nes, and M.L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  8. Delve, B.J. 1990. Nisin and its uses as a food preservative. Food Technol. 44, 100-117.
  9. Dodd, H.M., N. Horn, Z. Hao, and M.J. Gasson. 1992. A lactococcal expression system for engineered nisins. Appl. Environ. Microbiol. 58, 3683-3693.
  10. FDA. Nisin preparation. 1988. Affirmation of GRAS status as a direct human food ingredient. Food Drug Admin. Fed. Reg. 53, 11247.
  11. Felske, A. and A.D.L. Akkermans. 1998. Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soils. Microb. Ecol. 36, 31-36. https://doi.org/10.1007/s002489900090
  12. Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. 1994. Regular, nonsporing gram-positive rods, pp. 565-570. In Bergey's Manual of Determinative Bacteriology. 9thed. Williams and Wilkins. Baltimore, USA.
  13. Hurst, A. 1981. Nisin. Adv. Appl. Microbiol. 27, 85-123.
  14. Jack, R.W., J.R. Tagg, and B. Ray. 1995. Bacteriocin of Gram-positive bacteria. Microbiol. Rev. 59, 171-200.
  15. Kim, D.S. 2002. Characteristics of the bacteriocin from Lactobacillus sp. Oh-B3. Kor. J. Microbiol. Biotechnol. 30, 184-188.
  16. Klaenhammer, T.R. 1993. Genetics of bacteriocin produced by lactic acid bacteria. FEMS Microbiol. 12, 39-86.
  17. Klaenhammer, T.R. 1998. Bacteriocin of lactic acid bacteria. Biochimie 70, 337-349.
  18. Kwark, K.S., J.G. Cu, K.M. Bae, and H.K. Jun. 1999. Characterization of bacteriocin production by Lactococcus sp. J-105 isolated from Kimchi. Kor. J. Life Science 9, 111-120.
  19. Lee, M.K., K.K. Rhee, J.K. Kim, S.M. Kim, J.W. Jeong, and D.J. Jang. 2007. A survey of research papers on Korean Kimchi and R&D trends. Kor. J. Food Culture 22, 104-114.
  20. Lim, S.M. and D.S. Im. 2007. Bactericidal effect of bacteriocin of Lactobacillus plantarum K11 isolated from Dongchimi on Escherichia coli O157. J. Food Hyg. Safety 22, 151-158.
  21. Lind, H., H. Jonsson, and J. Schnurer. 2005. Antifungal effect of dairy propionibacteria−contribution of organic acids. Int. J. Food Microbiol. 98, 157-165. https://doi.org/10.1016/j.ijfoodmicro.2004.05.020
  22. Lingren, S.E. and W.J. Dobrogosz. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentation. FEMS Microbiol. Rev. 87, 149-163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x
  23. Maisnier, P.S., E. Forni, and J. Richard. 1996. Purification, partial characterization and mode of action of enterococcin EFS2, an antilisterial bacteriocin produced by a strain of Enterococcus faecalis isolated from a Cheese. Int. J. Food Microbiol. 30, 255-270. https://doi.org/10.1016/0168-1605(96)00950-6
  24. Mattick, A.T.R. and A. Hirsch. 1947. Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2, 5-8.
  25. Moonchai, S., W. Madlhoo, K. Jariyachavalit, H. Shimizu, S. Shioya, and S. Chauvatcharin. 2005. Application of a mathematical model and differential evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7. Bioprocess Biosyst. Eng. 28, 15-26. https://doi.org/10.1007/s00449-005-0004-5
  26. Noonpakdee, W., C. Santivarangkna, P. Jumriangrit, K. sonomoto, and S. Panyim. 2003. Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented Sausage. Int. J. Food Microbiol. 81, 137-145. https://doi.org/10.1016/S0168-1605(02)00219-2
  27. Parente, E., A. Ricciardi, and G. Addario. 1994. Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140 NWC during batch fermentation. Appl. Microbiol. Biotechnol. 41, 388-394.
  28. Schagger, H. and G.V. Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  29. Settanni, L. and A. Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
  30. Steiles, M.E. and J.W. Hastings. 1991. Bacteriocin producing by lactic acid bacteria: potential for use in meat preservation. Trends Food Sci. Technol. 2, 247-251. https://doi.org/10.1016/0924-2244(91)90706-O
  31. Tagg, J.R. and A.R. McGiven. 1971. Assay systems for bacteriocins. Appl. Microbiol. 21, 943.
  32. U. S. Food and Drug Administration. 1999. Nisin preparation, Affirmation of GRAS stratus as a direct human food ingredient. Food & Drug Admin. Fed. Reg. 54, 6120-6123.
  33. Walter, J., G.W. Tannock, T. Tilsala, A. Isjarvi, S. Rodtong, D.M. Loach, K. Munro, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66, 297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
  34. Yang, E.J., J.Y. Chang, H.J. Lee, J.H. Kim, D.K. Chung, J.H. Lee, and H.C. Chang. 2002. Characterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Kor. J. Food Sci. Technol. 42, 311-318.