DOI QR코드

DOI QR Code

A Comparison of Nonstationary Frequency Analysis Using Successive Average and Moving Average Method

누적평균과 이동평균을 이용한 비정상성 빈도 해석결과 비교

  • 권현한 (전북대학교 토목공학과) ;
  • 소병진 (전북대학교 토목공학과) ;
  • 윤필용 (한양대학교 건설환경공학과) ;
  • 김태웅 (한양대학교 건설환경공학과) ;
  • 황석환 (한국건설기술연구원 수자원환경본부)
  • Received : 2011.10.20
  • Accepted : 2011.11.21
  • Published : 2011.12.31

Abstract

This study employed a nonstationary frequency analysis to consider a trend with successive average and moving average method that are used to derive a relationship between mean of annual maximum rainfall(MAMR) and Gumbel parameters. The Mann-Kendall test is applied to determine the changing trend of the successive and moving average method based MAMR for 62 weather stations. Mann-Kendall test of trend shows an increasing and decreasing trend (p-value<0.1) of MAMR for Gwangju and Miryang station, while no significant trend is observed for Goheung station, and theses three stations were used to assess performance of the proposed model. This study confirmed variability of design rainfalls according to the identified trends for all the cases. The successive average method was overall insensitive to short-term variability because of accumulating the MAMR. The moving average method showed better performance in terms of recognizing short-term variability. There are advantages to have more strong relationship between MAMR and Gumbel parameters compared to the successive average method based MAMR. On the other hand, the moving average method is more or less sensitive to the extremes so that the estimated results can be unreliable for limited-size data sets. This study finally evaluated changes in 100-year design rainfall for the year 2030. The design rainfalls based on the successive average and the moving average method are expected to increase by about 8% and 18% across Korea, respectively.

본 연구에서는 경향성을 고려한 비정상성 빈도해석을 수행하였으며 연최대강수량과 Gumbel 분포 매개변수의 관계를 유도하는데 있어서 누적 평균과 이동 평균 방법을 이용하였다. 자료의 경향성을 평가하기 위해서 62개 기상관측소에 24시간 지속시간 누적 평균 강우량과 이동 평균 강우량에 대해서 Mann-Kendall 검정을 실시하였다. 경향성 검정결과 10% 유의수준에 대하여 통계적으로 유의한 증가경향을 보이는 광주지점과 유의한 감소경향을 보이는 밀양지점, 경향성이 존재하지 않는 고흥지점에 대하여 본 연구방법을 적용하였다. 모든 경우에 있어서 주어진 경향성분에 준하는 확률강수량의 변동성을 확인할 수 있었다. 전체적으로 누적 평균을 이용한 방법은 자료가 계속 누적되면서 통계량이 추정되므로 단기간에 나타나는 경향성분의 변동성에 민감하지 않은 특징을 보여주었다. 반면 이동 평균 방법은 단기간에 나타나는 경향성분의 변동성을 효과적으로 인지할 수 있었으며 누적 평균 방법에 비해서 Gumbel 분포의 매개변수와 더 큰 상관성을 확보할 수 있는 장점을 발견할 수 있었다. 반면 상대적으로 극치값에 민감한 특징이 있기 때문에 짧은 자료 연한을 갖는 자료에 대해서 적용 시 주의가 필요할 것으로 판단된다. 누적 평균 방법에 경우 100년 빈도 기준으로 2030년도에 전국적으로 8%증가가 전망되며 이동 평균 방법의 경우 전국적으로 2030년도 기준으로 18% 증가가 전망된다.

Keywords

Acknowledgement

Supported by : 소방방재청

References

  1. 건설교통부 (2000) 한국 확률강우량도 작성, 1999년도 수자원관리 기법개발연구조사 보고서, pp. 87.
  2. 권영문, 박진원, 김태웅 (2009) 강우량의 증가 경향성을 고려한 목표연도 확률강우량 선정, 대한토목학회 논문집, 대한토목학회, 제29권, 제2B호, pp. 131-139.
  3. 권현한, 김병식 (2009) 비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발, 한국수자원학회 논문집, 한국수자원학회, 제42권, 제3호, pp. 213-225.
  4. 이창환 (2010) 기후변화를 고려한 비정상성 강우빈도해석 방법 연구, 학위논문, 한양대학교.
  5. Adlouni, S.El., Ouarda, T., Zhang, X., Roy, R. and Bobee, B. (2007) "Generalized maximum likelihood estimators for the nonstationary generalized extreme value model." Water Resource Research, Vol. 43, No. 3, pp. 1-13.
  6. Burn, D.H. and Hag Elnur, M.A. (2002) "Detection of hydrologic trends and variability." Journal of Hydrology, Vol. 255, pp.107-122. https://doi.org/10.1016/S0022-1694(01)00514-5
  7. Cox, D.R., Isham, V.S. and Northrop, P.J. (2002) "Floods: some probabilistic and statistical approaches." The Royal Society, Vol. 360, No. 1796, pp. 1389-1408.
  8. Elsner, J.B., Niu, X. and Jagger, T.H. (2004) "Detecting Shifts in Hurricane rates using a Markov chain Monte Carlo approach." Journal of Climate, Vol. 17, pp.2652-2666. https://doi.org/10.1175/1520-0442(2004)017<2652:DSIHRU>2.0.CO;2
  9. He, Y., Bardossy, A. and Brommundtm, J. (2006) "Non-stationary flood frequency analysis in southern Germany." The 7th International Conference on Hydro Science and Engineering, Philadelphia, USA.
  10. Katz R., Parlange W., Marc, B. and Naveau, P. (2002) "Statistics of extremes in hydroloy." Advances in Water Resource, Vol. 25, pp.1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  11. Khaliq, M.N., Ouarda, T.B.M.J., Ondo, J.C., Gachon, P. and Bobee, B. (2006) "Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review". Journal of Hydrology, 329, pp. 534-552. https://doi.org/10.1016/j.jhydrol.2006.03.004
  12. Kwon, H.H., Brown, C. and Lall, U. (2008) Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophysical Research Letters, Vol.35, L05404.
  13. Kwon, H.H., Khalil, A.F. and Lall, U. (2009) Non-homogeneous Hidden Markov Model based Daily Rainfall Simulation Using Seasonal Climate Forcing: Application to Everglades National Park, Florida, Water Resources Research, under review.
  14. Leclerc, M. and Ouarda, T.B.M.J. (2007) "Non-stationary regional flood frequency analysis at ungauged sites." Journal of Hydrology, vol. 343, pp. 254-265. https://doi.org/10.1016/j.jhydrol.2007.06.021
  15. Li, Y., Cai, W. and Campbell, E.P. (2005) "Statistical Modeling of Extreme Rainfall in Southwest Western Australia." Journal of Climate, Vol. 18, pp. 852-863. https://doi.org/10.1175/JCLI-3296.1
  16. Mearns, L.O., Schneider, S.H., Thompson, S.L. and McDaniel, L.R. (1990) "Analysis of climate variability in general circulation models : Comparison with observation and changes in variability 2XCO2 experiments", J. Climate, Vol. 4. pp. 425-435.
  17. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P. and Stouffer, R.J. (2008) "Stationarity is dead: Whither water management", Science, 319, pp. 573-574. https://doi.org/10.1126/science.1151915
  18. Ouarda, T.B.M.J. and Adlouni, E. (2008) "Bayesian Inference of Non-Stationary Flood Frequency Models." World Environmental and Water Resources Congress 2008, Ahupua'a, 2008 ASCE.
  19. Renard, B., Lang, M. and Bois, P. (2006) "Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data", Stoch Environ Res Risk Assess, Vol. 21, pp.97-112. https://doi.org/10.1007/s00477-006-0047-4
  20. Stedinger, J.R. and Crainiceanu, C.M. (2001) "Climate variability and flood-risk management, risk-based decision making in water resource", IX Proceedings of the Ninth Conference, United Engineering Foundation, ASCE, Santa Barbara, CA, USA, pp. 77-86.
  21. Strupczewski, W.G., Singh, V.P. and Feluch, W. (2001) "Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation", Journal of Hydrology, Vol. 248, pp. 123-142. https://doi.org/10.1016/S0022-1694(01)00397-3
  22. Zhang, Z., Wagener, T., Reed, P.M. and Bhushan, R. (2008) "Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization", Water Resour. Res., 44, W00B04.

Cited by

  1. Trend Analysis of Extreme Precipitation Using Quantile Regression vol.45, pp.8, 2012, https://doi.org/10.3741/JKWRA.2012.45.8.815
  2. Estimation of Future Design Rainfalls in Administrative Districts Using Nonstationary GEV Model vol.13, pp.3, 2013, https://doi.org/10.9798/KOSHAM.2013.13.3.147
  3. Future Trend Analysis of Hydrologic Time Series in Chungju Dam Basin Using Quantile Regression vol.15, pp.3, 2015, https://doi.org/10.9798/KOSHAM.2015.15.3.275
  4. Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.331
  5. Estimation and Assessment of Future Design Rainfall from Non-stationary Rainfall Frequency Analysis using Separation Method vol.48, pp.6, 2015, https://doi.org/10.3741/JKWRA.2015.48.6.451
  6. Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed vol.57, pp.5, 2015, https://doi.org/10.5389/KSAE.2015.57.5.139