DOI QR코드

DOI QR Code

Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea

수도권 지역의 도시 기상 특성

  • Kim, Yeon-Hee (Forecast Research Laboratory, National Institute of Meteorological Research) ;
  • Choi, Da-Young (Forecast Research Laboratory, National Institute of Meteorological Research) ;
  • Chang, Dong-Eon (Forecast Research Laboratory, National Institute of Meteorological Research)
  • 김연희 (국립기상연구소 예보연구과) ;
  • 최다영 (국립기상연구소 예보연구과) ;
  • 장동언 (국립기상연구소 예보연구과)
  • Received : 2011.03.02
  • Accepted : 2011.07.28
  • Published : 2011.09.30

Abstract

The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.

Keywords

References

  1. 김기훈, 김연희, 장동언, 신승숙, 김동균, 황윤정, 최다영, 박종임, 2010: 2010년 수도권 특별관측 소개 및 호우사례분석. 한국기상학회 가을 학술대회 논문집, 260-261.
  2. 김연희, 구해정, 남재철, 2005: 서울시 강우 특성 분석을 통한 도시화 영향 평가. 서울도시연구, 6(2), 165-183.
  3. 구해정, 김연희, 최병철, 2007: 서울시 도시 열섬 구조의 변화에 관한 연구. 기후연구소, 2(2), 67-78.
  4. 부경온, 오성남, 2000: 1999년 서울지역 기온의 시공간 분포 특성. 한국기상학회지, 36(4), 499-506.
  5. 사공호상, 2004: 원격탐사와 GIS를 이용한 수도권 도시화지역 확산특성에 관한 연구. 국토연구, 40, 53-69.
  6. 주현수, 김석철, 반지영, 최순심, 2006: 도시지역에서의 바람길과 대기질 영향에 관한 연구. 한국환경정책평가연구원, 219 pp.
  7. Baik, J.-J., Y.-H. Kim, and H.-Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteor., 40, 1462-1475. https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2
  8. Balling, R., and S. Brazel, 1987: Recent changes in Phoenix summertime diurnal precipitation patterns. Theor. Appl. Climatol., 38, 50-54. https://doi.org/10.1007/BF00866253
  9. Bornstein, R., and G. M. LeRoy, 1990: Urban barrier effects on convective and frontal thunderstroms. Extended Abstracts, Fourth Conf. on Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 120-121.
  10. Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos. Environ., 34, 507-516. https://doi.org/10.1016/S1352-2310(99)00374-X
  11. Chandler, T., 1965: The Climate of London, Hutchinson, London.
  12. Changnon, S. A., 1968: The La Porte weather anomaly-fact or fiction? Bull. Ameri. Meteor. Soc., 49(1), 4-11.
  13. Changnon, S. A., R. G. Semonin, and F. A. Huff, 1976: A hypothesis for urban rainfall anomalies. J. Appl. Meteor., 15, 544-560. https://doi.org/10.1175/1520-0450(1976)015<0544:AHFURA>2.0.CO;2
  14. Cho, H.-M., C.-H. Cho, and K.-W. Chung, 1988: Air temperature changes due to urbanization in Seoul area. J. Korean Meteor. Soc., 24, 27-37 (in Korean).
  15. Cotton, W. R., and Pielke, R. A., 1995: Human Impacts on Weather and Climate, Cambridge University Press, 288 pp.
  16. Deosthali, V., 2000: Impact of rapid urban growth on heat and moisture islands in Pune city. India. Atmos. Environ., 34, 2745-2754. https://doi.org/10.1016/S1352-2310(99)00370-2
  17. Draxler, R. R., 1986: Simulated and observed influence of the nocturnal urban heat island on the local wind field. J. Climate Appl. Meteor., 25, 1125-1133. https://doi.org/10.1175/1520-0450(1986)025<1125:SAOIOT>2.0.CO;2
  18. Gallo, K. P., and T. W. Owen, 1999: Satellite-Based Adjustments for the urban heat island temperature bias. J. Appl. Meteor., 38, 806-813. https://doi.org/10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2
  19. Garstang, M., P. D. Tyson, and G. D. Emmitt, 1975: The structure of heat islands. Rev. Geophys. Space Phys., 13, 139-165. https://doi.org/10.1029/RG013i001p00139
  20. Hjemfelt, M. R., 1982; Numerical simulation of the effects of St. Louis on mesoscale boundary-layer airflow and vertical air motion: Simulations of urban vs non-urban effects. J. Appl. Meteor., 21, 1239-1257. https://doi.org/10.1175/1520-0450(1982)021<1239:NSOTEO>2.0.CO;2
  21. Huff, F. A., and S. A. Changnon, Jr., 1972: climatological assessment of urban effects on precipitation at St. Louis. J. Appl. Meteor., 11, 823-842. https://doi.org/10.1175/1520-0450(1972)011<0823:CAOUEO>2.0.CO;2
  22. Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33. 3897-3909. https://doi.org/10.1016/S1352-2310(99)00132-6
  23. Jauregui, E., 1997: Heat island development in Mexico city. Atmos. Environ., 22, 3821-3831.
  24. Kanda, M., Y. Inoue, and I. Uno, 2000: Numerical study on Kanpachi cloud. Tenki, 47, 83-96.
  25. Kim, Y.-H, 2003: Meteorological aspects of urban heat islands. Thesis for degree of Ph. D., 125 pp.
  26. Kim, Y.-H, and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41, 651-659. https://doi.org/10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2
  27. Kim, Y.-H and J.-J. Baik, 2004: Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol., 79, 151-164. https://doi.org/10.1007/s00704-004-0070-7
  28. Kim, Y.-H and J.-J. Baik, 2005: Spatial and Temporal Structure of the Urban Heat Island in Seoul. J. Appl. Meteor., 44., 593-605.
  29. Kim, Y.-H, S.-B. Ryoo, J.-J. Baik, I.-S. Park, H.-J. Koo, and J.-C. Nam, 2008: Does the restoration of an inner-city stream in Seoul affect local thermal environment? Theor. Appl. Climatol., 92, 239-248. https://doi.org/10.1007/s00704-007-0319-z
  30. Kim, C., M.-S. Suh, and K.-O. Hong, 2009: Bayesian changepoint analysis of the annual maximum of daily and subdaily precipitation over South Korea. J. Climate, 22, 6741-6757. https://doi.org/10.1175/2009JCLI2800.1
  31. Landsberg, H. E., 1970: Man-made climate changes. Science, 170, 1265-1274. https://doi.org/10.1126/science.170.3964.1265
  32. Landsberg, H. E., 1981: The Urban Climate. Academic Press. New York, 275 pp.
  33. Lin, Y.-L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 40-49. https://doi.org/10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2
  34. Montavez, J. P., A. Rodriguez, and J. I. Jimenez, 2000: A study of the urban heat island of Granada. Int. J. Climatol., 20, 899-911. https://doi.org/10.1002/1097-0088(20000630)20:8<899::AID-JOC433>3.0.CO;2-I
  35. Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  36. Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1-24.
  37. Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.
  38. Olfe, D. B., and R. L. Lee, 1971: Linearized calculations of urban heat island convection effects. J. Atmos. Sci., 28, 1374-1388. https://doi.org/10.1175/1520-0469(1971)028<1374:LCOUHI>2.0.CO;2
  39. Park, H.-S., 1986: Features of the heat island in Seoul and its surrounding cities. Atmos. Environ., 20, 1859-1866. https://doi.org/10.1016/0004-6981(86)90326-4
  40. Sanderson, M., and R. Gorski, 1978: The effect of metropolitan Detroit-Windsor on precipitation. J. Appl. Meteor., 17, 423-427. https://doi.org/10.1175/1520-0450(1978)017<0423:TEOMDW>2.0.CO;2
  41. Sato, N., and M. Takahashi, 2000: Long term changes in the properties of summer precipitation in the Tokyo area. Tenki, 47(9), 304-308.
  42. Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall Modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689-701. https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2
  43. Vukovich, F. M., W. J. King, J. W. Dunn, and J. J. B. Worth, 1979: Observations and simulations of the diurnal variation of the urban heat island circulation and associated variations of the ozone distribution: a case study. J. Appl. Meteor., 18, 836-854. https://doi.org/10.1175/1520-0450(1979)018<0836:OASOTD>2.0.CO;2
  44. Yague, C., E. Zurita, and A. Martinez, 1991: Statistical analysis of the Madrid urban heat island. Atmos. Environ., 25, 327-332. https://doi.org/10.1016/0957-1272(91)90004-X