Application of Low Pressure Fogging System for Commercial Tomato Greenhouse Cooling

상업용 토마토온실 냉방을 위한 저압분무식 포그시스템의 적용

  • Received : 2011.02.11
  • Accepted : 2011.03.10
  • Published : 2011.03.31

Abstract

The objective of the present study is to identify the applicability of a low pressure fogging system for cooling commercial tomato greenhouse. In particular, the cooling system in this experiment utilizes low pressure spray nozzles which were developed in Korea recently. The experimental result that the temperature in fog-cooled greenhouse was lower than the non-cooled greenhouse showed the cooling effect by the low pressure fogging system. But because the relative humidity in fog-cooled greenhouse was comparatively low, the satisfactory cooling effect could be acquired by narrowing the space of fog nozzles and extending fogging time to supply more fog spray quantity. The variation of temperature distribution in fog-cooled greenhouse along timelag was insignificant during short time, but that was great during long period of day. This result showed the variation of temperature along timelag was slight by fog cooling but great by other factors like radiation, ventilation, air flow, etc. The advanced operation technology of fog system was required to reduce the variation of temperature along time lag. We plan to suggest the advanced installation and operation technology of low pressure fogging system for cooling commercial tomato greenhouse by further experiments in near future.

토마토 재배용 상엽용 온실의 여름철 냉방에 최근 국내에서 개발된 저압분무식 포그냉방시스템을 사용하기 위한 시스템 설치 및 관리기술을 규명하기 위하여 저압 포그시스템을 온실에 설치하여 실험을 통하여 그 적용 가능성을 분석하였으며 결과를 요약하면 다음과 같다. 포그를 분사한 온실이 분사하지 않은 온실보다 온도가 더 낮은 값을 보여 포그분사에 의한 냉방효과가 있음을 확인할 수 있었다. 그러나 전체적으로 상대습도가 비교적 낮게 나타나 냉각효과를 충분히 얻지 못한 것으로 판단되며, 포그노즐의 설치간격을 더 줄이거나 포그분사 시간을 더 늘리는 등의 조정을 통해서 충분한 냉방효과를 얻을 수 있을 것으로 판단되었다. 온실 전체의 시간에 따른 온도분포는 짧은 시간 동안에는 온도분포의 큰 변화는 없었으나 하루의 긴 시간 동안에는 온도분포의 변화가 다소 크게 나타났다. 이는 포그분사에 따른 온도편차의 발생은 크지 않으나 일사, 공기유동 등 다른 환경요인들에 의해 발생된 편차가 큰 것으로 판단된다. 특히 본 자료에는 나타내지 않았지만 온실 하부에서의 수평방향의 온도편차는 더 크게 나타나는 경향이 있었기 때문에 온도편차를 줄일 수 있는 포그시스템 관리방안에 대한 연구가 필요할 것으로 판단되었다. 앞으로 추가 실험을 통해 자연환기 토마토재배온실의 냉방을 위한 저압포그시스템 설치 및 관리기술을 제시하고자 한다.

Keywords

References

  1. Abdel-Ghany, A.M., E. Goto, and T. Kozai. 2006. Evaporation characteristics in a naturally ventilated fog-cooled greenhouse. Renewable Energy 31(14): 2207-2226. https://doi.org/10.1016/j.renene.2005.11.004
  2. Abdel-Ghany, A.M. and T. Kozai. 2006. Dynamic modeling of the environment in naturally ventilated, fog-cooled greenhouse. Renewable Energy 31(10): 1521-1539. https://doi.org/10.1016/j.renene.2005.07.013
  3. Arbel, A., M. Barak, and A. Shklyar. 2003. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering 84:45-55. https://doi.org/10.1016/S1537-5110(02)00216-7
  4. Arbel, A., O. Yekutieli, and M. Barak. 1999. Performance of a fog system for cooling greenhouse. J. Agric. Engag Res. 72:129-136. https://doi.org/10.1006/jaer.1998.0351
  5. Kim, M.K., G.S. Kim, and S.W. Nam. 2001a. Efficient application of greenhouse cooling systems. Ministry for Food, Agriculture, Forestry and Fisheries pp. 28-118 (in Korean).
  6. Kim, M.K., K.S. Kim, and H.J. Kwon. 2001b. The cooling effect of fog cooling system as affected by air exchange rate in natural ventilation greenhouse. Journal of Bio-Environment Control 10(1): 10-14 (in Korean).
  7. Kim, Y.J., Y.S. Ryou, J.H. Yun, K.Y. Oh, and S.H. Kim. 1997. Fog nozzle - Greenhouse cooling system analysis. Journal of Bio-Environment Control 6(1):48-54 (in Korean).
  8. Lee, J.S. 1997. Studies on the dropping method of air temperature in the protected house for summer culture of flower crops. Ministry for Food, Agriculture, Forestry and Fisheries pp. 41-155 (in Korean).
  9. Luchow, K. and C. Von Zabeltitz. 1992. Investigation of a spray cooling system in a plastic-film greenhouse. Journal of Agricultural Engineering Research 52:1-10. https://doi.org/10.1016/0021-8634(92)80046-U
  10. Nam, S.W., K.S. Kim, and G.A. Giacomelli. 2005. Improvement of cooling efficiency in greenhouse fog system using the dehumidifier. Journal of Bio-Environment Control 14(1):29-37 (in Korean).
  11. Perdigones, A., J.L. Garcia, A. Romero, A. Rodriguez, L. Luna, C. Raposo, and S. de la Plaza. 2008. Cooling strategies for greenhouse in summer: control of fogging by pulse width modulation. Biosystems Engineering 99:573-586. https://doi.org/10.1016/j.biosystemseng.2008.01.001
  12. Sim, S.Y. 2010. Overcoming high temperature problem by using low pressure fog nozzle in greenhouse. Contents 51(2):32-37 (in Korean).
  13. Suh, W.M., Y.C. Yoon, J.Y. Lee, and S.G. Lee. 1992. Greenhouse cooling by fog system. Journal of the Korean Society of Agricultural Engineers 41(1):60-71 (in Korean).
  14. Yu, I.H., M.K. Kim, H.J. Kwon, and K.S. Kim. 2002. Development of CFD model for estimation of cooling effect of fog cooling system in greenhouse. Journal of Bio-Environment Control 11(2):93-100 (in Korean).