DOI QR코드

DOI QR Code

Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment

석탄회를 이용한 석탄광산 폐기물의 안정화 효율성 평가: 컬럼 시험

  • Oh, Se-Jin (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Biological Environment, Kangwon National University) ;
  • Ko, Ju-In (Technology Research Center, Korea Mine Reclamation Corporation) ;
  • Lee, Jin-Soo (Technology Research Center, Korea Mine Reclamation Corporation) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
  • 오세진 (강원대학교 바이오자원환경학과) ;
  • 김성철 (강원대학교 바이오자원환경학과) ;
  • 고주인 (한국광해관리공단 광해기술연구소) ;
  • 이진수 (한국광해관리공단 광해기술연구소) ;
  • 양재의 (강원대학교 바이오자원환경학과)
  • Received : 2011.11.20
  • Accepted : 2011.12.12
  • Published : 2011.12.31

Abstract

In this study, coal combustion ash (CCA) was evaluated for its stabilization effect on acidic mine waste with column experiment. Total of six treatments were installed depending on mixing ratio between coal wastes and CCA (0, 20, 40%) and mixing method (completely mixing and layered). Artificial acidic rain (pH 5.6) was used for feeding solution with flow rate of $0.05mL\;min^{-1}$. Result showed that higher pH of leachate was observed as more CCA was mixed. The highest pH in leachate was measured when 40% of CCA was mixed with coal waste (pH of 5.8). Also, complete mixing with CCA and coal waste was more effective to increase the pH of leachate than layered treatment. Regarding the reduction of soluble Fe amount, the highest efficiency (78%) was observed when 20% of coal ash was completely mixed with mine waste. Based on those result, optimum mixing ratio of coal ash with mine waste can be ranged 20-40% depending on environmental circumstances in the field.

본 연구는 다량의 중금속을 함유하는 폐석탄 광산에 적치된 폐석으로부터 발생하는 침출수의 안정화를 위해 석탄회를 안정화제로서의 적용성을 평가하는데 목적이 있다. 석탄폐석에 석탄회를 적용하여 컬럼시험을 수행한 결과는 다음과 같다. 1) 석탄회의 pH는 비산재와 바닥재가 각각 11.1, 9.7의 강알칼리성을 갖는 것으로 나타나 강산성 조건의 폐석 (pH 3.5)를 교정하였으며 유기물을 비롯하여 식물 생장에 필요한 영양소인 인산, 칼슘 등을 함유하는 것으로 나타나 폐석과 혼합할 경우 비옥도가 개선될 수 있을 것으로 판단된다. 2) 폐석만을 충진한 컬럼에서 발생하는 침출수의 pH는 3.5~4.0의 수준을 시험기간 동안 지속적으로 유지하는 것으로 나타나지만, 석탄회의 처리량에 따라 40% (pH 5.0~6.0) > 20% (pH 4.5)로 나타나고, 동일 처리량 (40%)의 처리방법에 따른 효율성은 완전혼합 (pH 5.0~6.0) 방법이 층위처리 (pH 4.0~4.5)에 비해 pH 상승효과가 높은 것으로 조사되었다. 3) 침출수의 Ca과 Mg의 함량은 4 pore volume까지 빠르게 용탈되다 그 이후부터 안정화 되었으며 석탄회에서 용탈된 Ca과 Mg의 영향으로 폐석에 함유되었던 Cu, Pb, As, 및 Al 등이 탄산이온 ($CO_3^{2-}$) 또는 수산화이온 ($OH^-$)과 불용성 화합물을 형성하여 안정화 되는 것으로 사료된다. 4) 철의 용존함유량에 대한 분석결과 석탄회 처리구의 용존량이 석탄회를 40% 층위처리한 처리구를 제외하고 대조구에 비해 약 8-74% 정도 감소하는 것으로 조사되었다. 5) 석탄회를 이용한 폐석의 중화 및 철의 용존량 감소 효율성을 평가한 결과 폐석의 중화 효율성은 석탄회를 40% 완전혼합한 경우 가장 높았으며 철의 용존량 감소 효율성은 석탄회를 20% 완전혼합한 경우가 가장 좋은 것으로 조사되었다. 따라서 석탄회를 이용하여 현장에서 폐석을 처리할 경우 약 20-40%의 석탄회를 처리해야 높은 효율성을 얻을 수 있을것으로 사료된다.

Keywords

References

  1. Adriano, D.C. 1986, Trace Elements in the Terrestrial Environment. Springer Verlag New York Inc. 390-420.
  2. James. V., J.R. Bothe., and W.B. Paul. 1999. Arsenic Immobilization by calcium arsenate formation. Environ. Sci. Technol. 33:3806-3811. https://doi.org/10.1021/es980998m
  3. Jung, G.B., J.S. Lee, W.I. Kim, J.H. Kim, J.D. Shin, and S.G. Yun. 2005. Fractionation and Potential Mobility of Heavy Metals in Tailings and Paddy Soils near Abandoned Metalliferous Mines. J. Soil Sci. Fert. 38(5):259-268.
  4. Jo, Y.D., H.S. Kim, and J.H. Ahn. 2007a. Precipitation Characteristics of Heavy Metal Ions in Coal Mine Drainage. Journal of Miner. 20(2):125-134.
  5. Jo, K.S., Y. Roh, and D.H. Chung. 2007b. A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment. Jour. Korean Earth Sience Society. 28(1):112-122. https://doi.org/10.5467/JKESS.2007.28.1.112
  6. Ko, J.I. 2007. A Study on Cover System Design and Seepage Treatment System through the Characterization of the Waste Rock Pile in a Coal Mine. Hanyang University. Seoul, Korea.
  7. Kim, B.G., G.S. Lee, C.W. Nam, and C.L. Park. 2008a. Characteristics of Soil Conditioner Pellets fabriccated by Self-propagating Combustion Methods Using Coal Refuse. J. Soil Sci. Fert. 41(6):379-386.
  8. Kim, K.J. and J.W. Kim. 1981. A Study on the Use of Dolomite as a Water Treatment Aid. Journal of Civil Engineers. 29(3):145-152.
  9. Kim, K.R., Park, J.S., Kim, M.S., Kim, J.K., Yeon, K.H., Yang, J.E., and Hong, S.J. 2010a. Application of heavy metal immobilization using soil amendments in association with appropriate crop selection. J. Mine Reclam. Technol. 4(2):135-143.
  10. Kim, H.J., J.E. Yang, Y.S. Ok, K.Y. Yoo, B.K. Park, J.Y. Lee, and S.H. Jun. 2004. Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime Wastes from Soda Ash Production. J. Soil and Groundwater Env. 37-47.
  11. Kim, H.J., J.E. Yang, Y.S. Ok, J.Y. Lee, B.K. Park, S.H. Kong, and S.H. Jun. 2005. Assessment of Water Pollution by Discharge of Abandoned Mines. J. Soil and Groundwater Env. 10(5):25-36.
  12. Kim, H.J., J.E. Yang, J.Y. Lee, and S.H. Jun. 2006. Treatment of the Closed Mine Wastes Using Lime Cake from Soda Ash Production. J. Soil and Groundwater Env. 171-182.
  13. Kim, H.S., S.W. Hong, S.D. Cho, and J.H. Kim. 1995. The Assessment of Water Quality Contamination Following the Utilization of Coal Ash as Fill Materials. J. Geotechnical Soi. 11(3):5-15.
  14. Kim, J.G. 1999. Crystallinity and Chemical Reactivity of Birnessite Influenced by Iron. J. Soil Sci. Fert. 32(4):327-332.
  15. Kim, P.G., K.Y. Sung, and M.E. Park. 2008b. Assessment on the Mechanical-Chemical Stabilities of Coal Ash Blocks in Sea Water. Econ. Environ. Geol. 41(4):383-392.
  16. Kim, W.I., J.J. Kim, J.H. Yoo, J.Y. Kim, J.H. Lee, M.K. Paik, R.Y. Kim, and G.J. Im. 2010b. Arsenic Fractionation and Bioavailability in Paddy Soils Near Closed Mines in Korea. J. Soil Sci. Fert. 43(6):917-922.
  17. Lee, G.S. and Y.J. Song. 2010. Characterization of Leaching of Heavy Metal and Formation of Acid Mine Drainage from Coal Mine Tailings. J. of Inst. of Resources Recycling. 19(2):54-62.
  18. Lee, J.Y., M.Y. Han, J.S. Yang, and J.Y. Choi. 2009. A Study on Environmental.Mine Geographic Information System Approach for the Sustainable Mine Management and Prevention of Mine Hazards. J. Envir. Policy. 8(1): 130-143.
  19. ME (Ministry of Environment). 2002. The Korean standard method of environmental pollutions for soil pollution.
  20. MKE (Ministry of Knowledge Economy). 2005. A Study on the Mine Pollution Control for the Mine Colsure (Sa book, Go han, Tae back Region).
  21. MKE (Ministry of Knowledge Economy). 2007. Development of Practical Technologies for Damage Assessments and Countermeasure for Geohazards.
  22. MKE (Ministry of Knowledge Economy). 2009. Development of Practical Technologies for Countermeasures for Hazards in Steep Slope and Abandoned Mine Areas.
  23. Moon, D.H., K.H. Cheong, T.S. Kim, J.H. Kim, S.B. Choi, Y.S. Ok, and O.R. Moon. 2010. Stabilization of Pb Contaminated Army Firing Range Soil using Calcined Waste Oyster Shells. Environ. Eng. Res. 32:185-192.
  24. Moon, Y.H., Y.G. Song, H.S. Moon, and Y.S. Zhang. 2010. Mobility of Matals in Tailings Using a Column Experiment from the Guryong Copper Mine. J. Soil Sci. Fert. 43(3):275-282.
  25. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  26. Nriagu J.O. and J.M. Pacyna. 1988, Quantitative Assessment of Worldwide Contamination of Air, Water and Soil by Trace Metal. Nature. 333:134-139. https://doi.org/10.1038/333134a0
  27. Park, C.J., W.I. Kim, G.B. Jeong, J.S. Lee, J.S. Ryu, and J.E. Yang. 2006. Characteristics of Heavy Metal Release from the Abandoned Dogog Mine Tailing in Korea. Korea J. Environ. Agric. 25(4):316-322. https://doi.org/10.5338/KJEA.2006.25.4.316
  28. Roo, W.H., W.M. Lee, P.S. Hong, C.H. Yang, J.Y. Ahn, I.H. Baek, and B.R. Lee. 2003. The Synthesis of Zeolite Using Fly Ash and Its Heavy Metal Adsorption Performance. J. Che. Eng. 41(5):655-660.
  29. Skoog, D.A. and J.J. Leary. 1991. Principles of instrumental analysis. Saunders College Publishing. 357-400.
  30. Tony. S.S, and K.K. Pant. 2006 Solidifiaction stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric meterials. Journal of Hazardous Materials. 131:29-36 https://doi.org/10.1016/j.jhazmat.2005.06.046
  31. Yang, J.E., J. Scousen, Y.S. Ko, K.Y. Yoo, and H.J. Kim. 2006. Reclamation of Abandened Coal Mine Waste in Korea Using Lime Cake By-Products. Mine Wat. Env. 25:227-232. https://doi.org/10.1007/s10230-006-0137-z
  32. Yang, J.E., H.J. Kim, Y.S. Ok, J.Y. Lee, and J.H. Park. 2007. Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes. Geosci. Journal. 11(2):111-114. https://doi.org/10.1007/BF02913923
  33. Yoo, K.Y., Y.W. Cheong, Y.S. Ok, and J.E. Yang. 2005. Neutralization of Pyrophyllite Mine Wastes by the Lime Cake By-Product. Korea J. Environ. Agric. 24(3):215-221. https://doi.org/10.5338/KJEA.2005.24.3.215
  34. Yoo, J.K., S.H. Choi, and M.S. Lee. 2001. Separation of Fe Component from Zn, Fe Mixed Solution by Fly Ash. Environ. Eng. Res. 23(10):1675-1683.

Cited by

  1. In situ reclamation of closed coal mine waste in Korea using coal ash vol.60, pp.3, 2017, https://doi.org/10.1007/s13765-017-0275-y
  2. Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.525
  3. Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.064