DOI QR코드

DOI QR Code

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation

시설상추 생산체계에 대한 top-down 방식 전과정평가

  • 유종희 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 김계훈 (서울시립대학교 환경원예학과) ;
  • 소규호 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 이길재 (농업기술실용화재단) ;
  • 김건엽 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 이덕배 (국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2011.11.10
  • Accepted : 2011.12.15
  • Published : 2011.12.31

Abstract

This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

시설재배 상추생산체계에 대한 LCI DB를 구축하고 상추의 탄소성적산정과 전과정 영향평가를 위하여 전과정평가를 수행하였다. 상추재배에 관련된 농작업 투입물과 산출물에 대한 GTG 목록작성결과 시설상추 1 kg 생산하는데 투입되는 물질 중 유기질비료와 화학비료가 각각 $7.85E-01kg\;kg^{-1}\;lettuce$, $4.42E-02kg\;kg^{-1}\;lettuce$로 비료의 투입량이 가장 높았다. 비료와 에너지의 투입이 시설상추 생산에 가장 높은 비중을 차지하는 물질이었다. 영농단계에서 발생하는 직접 대기배출물 $CO_2$, $CH_4$, $N_2O$ 배출량의 합은 $3.23E-02kg\;kg^{-1}\;lettuce$이었다. 시설 상추 1 kg을 생산 전과정 중 발생하는 온실가스를 LCI 분석한 결과 시설상추 생산체계 전과정을 통하여 상추 1kg 생산에 발생하는 온난화 가스는 $CO_2$$8.65E-01kg\;CO_2\;kg^{-1}$로 가장 많았고, $CH_4$$N_2O$가 각각 $8.59E-03kg\;CH_4\;kg^{-1}$, $2.90E-04kg\;N_2O\;kg^{-1}$이었다. 전체적으로 온실가스 배출에 가장 크게 기여하는 공정은 비료생산으로 나타났고, 특히 아산화질소 발생에서 상추재배단계가 차지하는 비중이 높게 나타났는데 이것은 질소 비료 시용에 의한 아산화질소의 대기배출 때문으로 판단되었다. 각 온난화 가스들의 발생량을 $CO_2$-eq.로 환산하여 시설 상추 생산체계에서 발생하는 온실가스 배출량을 탄소 성적값으로 산정하였다. 시설상추 생산체계의 탄소 성적값은 1.14E+00 kg $CO_2$-eq. $kg^{-1}$였다. $CO_2$-eq.로 환산된 탄소 성적에 $CO_2$는 발생 비중이 총 온실가스 배출량에 약 76%, $CH_4$는 16%, $N_2O$는 8%를 차지하였다. LCI 분석결과 영농작업 단계에서 배출되는 온난화 가스의 주요원인은 농기계사용으로 인한 화석연료의 연소 중에 발생하는 이산화탄소, 메탄, 아산화질소와 질소비료 시용에 기인한 아산화질소의 대기 발생이었다. 전과정 영향평가 영향범주 중 포장에서 배출되는 $CO_2$, $CH_4$, $N_2O$와 직접적으로 관련된 영향범주는 지구온난화 영향범주와 광화학적 산화물 생성 범주 이며, 평가결과 지구온난화 영향범주의 특성화 값은 1.14E+00 kg $CO_2$-eq. $kg^{-1}$이었고, 광화학적 산화물 생성 범주 특성화 값은 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$이었다. 대부분 영향범주에서 비료생산에 의한 환경영향 기여도가 가장 높았고, 그다음으로 농자재생산 공정과 에너지생산 공정이 환경영향에 대한 기여도가 높았다.

Keywords

References

  1. Amlinger, F., S. Peyr, and C. Cuhls. 2008. Greenhouse gas emission from composting and mechnical biological treatment. Waste Manage. Res. 26(1):47-60. https://doi.org/10.1177/0734242X07088432
  2. Cho, K.H. and Y. Paek. 2007. Heat recovery effect using vegetable sludge of bio-thermal energy in closed chamber. J. Kor. Soc. Mechanical Technology 9(2):39-42.
  3. Choi, S.H., Y.T. Oh, and J. D. So. 2006. Characteristics of exhaust emission by the application of biodiesel fuel and oxygenates as an alternative fuel in an agricultural diesel engine. J. Biosystem Eng. 31(6):457-462. https://doi.org/10.5307/JBE.2006.31.6.457
  4. Dalgaard, R., N. Halberg, I.S. Kristensen, and I. Larsen. 2003. Proceeding from the 4th International Conference, Bygholm, Denmark, An LC Inventory based on representative and coherent farm types.
  5. Diaz, L.F and G.M. Savage. 2007. Factors that affect the process, In: Diaz, L et al. (eds) Compost science and technology, Elsevier, Amsterdam, Netherlands. pp. 49-66.
  6. Erwin, M.S. and M.F. Annik. 2008. LCA studies of food products as background for environmental product declarations, Int. J. Life Cycle Ass. 13(3):255-264. https://doi.org/10.1065/lca2007.12.372
  7. Frischknecht, R. and G. Rebitzer. 2005. The ecoinvent database system: a comprehensive web-based LCA database. J. Clean. Prod. 13(2005):1337-1343. https://doi.org/10.1016/j.jclepro.2005.05.002
  8. Haas, G., F. Wetterich, and U. Köpke. 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agri. Ecosyst. Environ. 83:43-53. https://doi.org/10.1016/S0167-8809(00)00160-2
  9. IPCC (Intergovernmental Panel on Climate Change). 1996. IPCC Good practice guidance and uncertainty management in national greenhouse gas inventories.
  10. IPCC (Intergovernmental Pannel on Climate Change). 2001. Climate change 2001, Radioactive forcing of climate change, The scientific basis. Cambridge University press, UK. pp. 388-390.
  11. Iserman, K. 1994. Agriculture's share in the emissions of trace gases affecting the climate and some cause oriented proposal for reducing this share, Environ. Pollut. 83:95-11. https://doi.org/10.1016/0269-7491(94)90027-2
  12. ISO (International Organization for Standardization), 1997. Environmental management-Life cycle assessment-Principles and framework. International Standard ISO 14040, ISO, Geneva.
  13. Jensen, A.A., L. Hoffman, B.T. Moller, A. Schmidt, K. Christiansen, J. Eikington, and F. van Dijk, 1997. Life Cycle Assessment (LCA) - A guide to approaches, experiences and information sources; European Environmental Agency.
  14. KCPA (Korea Crop Protection Association). 2007a. Agrochemical use guide book. Korea Crop Protection Association. Seoul, Korea.
  15. KCPA (Korea Crop Protection Association). 2007b. Agrochemical year book. Korea Crop Protection Association. Seoul, Korea.
  16. KEITI (Korea Environmental Industry & Technology Institute). 2010. Certificated Products List of Carbon Footprint. http://www.edp.or.kr/carbon/data/
  17. KFIA (Korea Fertilizer Industry Association). 2007. fertilizer production data. Korea Fertilizer Industry Association. Seoul, Korea. available http://www.fert-kfia.or.kr
  18. KWA (Korea Waste Association). 2007. Agricultural waste data. Korea Waste Association. Seoul, Korea. available from http://www.kwaste.or.kr/data/
  19. Lee, Y.B., H.B. Yun, Y. Lee., and D. Kaown. 2009. Evaluation of ammonia emission from arable soil applied liquid manure and compost. 2009 International Symposium for Improvement of Agro-Food Safety. pp. 329-338.
  20. Lim, S.S., H.J. Park, S.I. Lee. D.S. Lee, J.H Kwak, and W.J. Choi. 2009. The role of organic amendments with different biodegradability in Ammonia volatilization during composting of cattle manure. Korean J. of Environ. Agric. 28(1):20-24. https://doi.org/10.5338/KJEA.2009.28.1.020
  21. ME (Ministry of Environment). Guidelines for draw up on Carbon Footprint Label. Public announcement of Ministry of Environment 2009-86.
  22. MFAFF (Ministry for Food, Agriculture, Forestry and Fisheres). 2004. A study on establishing effective management system for equipped agricultural input wastes. C2004-A1. Ministry for Food, Agriculture, Forestry and Fisheres. Seoul, Korea.
  23. MKE (Ministry of Knowledge Economy). Software program PASS v4.1.
  24. RDA (Rural Development Administration). 2008. 2007 Agro-livestock incomes data book. Rural Development Administration. Suwon, Korea.
  25. Roh, K.A., D.B. Lee, G.Y. Kim, K.M. Shim, H.C. Jeong, and B.G. Ko. 2008. Estimation of GHG emission from agricultural area and development of national inventories in Korea. International Symposium on measures to climate change in agricultural sector. pp. 124-134.
  26. Seo, B.K. and S.K. Song. 2010. State-of-the-art of life cycle assessment for biodiesel Production from plant biomass. KSBB Journal 25:1-10.
  27. Simapro software v7.2, ecoinvent process system.
  28. Suan, E.P. 2005. Quantifying cradle-to-farm gate life-cycle impacts associated with fertilizer used for corn, soybean, and stover production, national renewable energy laboratory, Technical Report.
  29. Williams, A.G., E. Audsley, and D.L. Sandars. 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project IS0 205. Bedford: Cranfield University and Defra.

Cited by

  1. Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1157
  2. A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.502
  3. LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1143
  4. A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Rice Production System in Farming without Agricultural Chemicals vol.47, pp.5, 2014, https://doi.org/10.7745/KJSSF.2014.47.5.374