DOI QR코드

DOI QR Code

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer

가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석

  • 정규석 (농촌진흥청 국립농업과학원) ;
  • 허성기 (농촌진흥청 국립농업과학원) ;
  • 노은정 (농촌진흥청 국립농업과학원) ;
  • 이동환 (농촌진흥청 국립농업과학원) ;
  • 윤종철 (농촌진흥청 국립농업과학원) ;
  • 김계훈 (서울시립대학교 환경원예학과)
  • Received : 2011.08.26
  • Accepted : 2011.10.14
  • Published : 2011.10.31

Abstract

In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.

최근에 건강식품의 선호에 따라 신선 채소류 등의 소비가 증가하면서 퇴비등 유기농자재의 안전성에 대한 관심이 점점 증가하고 있다. 본 연구는 우리나라를 경기도, 강원도, 충청도, 전라도, 경상도로 크게 5그룹으로 구분한 후 각 지역에서 국내 축산의 주요 축종인 소, 돼지, 닭의 분뇨를 주원료로 생산, 유통되는 가축분 퇴비 32종과 박(粕) 종류가 주원료인 유기질 비료 28종을 수집하여 총균수, 대장균군 E. coli, Salmonella spp., E. coli O157:H7, S.aureus, L. monocytogenes, C. sakazakii, B. cereus 등 미생물 오염도를 분석하고자 수행되었다. 가축분 퇴비 32종과 유기질 비료 28종의 총균수는 각각 $5.09{\sim}9.68log\;CFU\;g^{-1}$, $3.16{\sim}7.09log\;CFU\;g^{-1}$이었다. 총균수에서는 유기질 비료가 가축분 퇴비보다 더 낮은 미 생물 분포를 보였으며, 특히 가축분 퇴비의 경우에는 총 32종 중 약 88%가 $7log\;CFU\;g^{-1}$ 이상의 수준을 보였다. 가축분 퇴비와 유기질 비료에서 대장균군은 각각 32종 중 4종 (12.5%)에서, 28종 중 4종 (14.2%)에서 검출되었고, E. coli은 각각 32종 중 2종 (6.3%), 28종 중 1종 (3.5%)에서 검출되었다. 대장균군은 가축분 퇴비에서, 그 범위가 $2.77{\sim}4.63log\;CFU\;g^{-1}$, 평균 $3.42log\;CFU\;g^{-1}$ 수준으로 나타났다. 반면 유기질 비료에서, 그 범위는 $1.00{\sim}3.25log\;CFU\;g^{-1}$, 평균 $2.42log\;CFU\;g^{-1}$ 수준으로 나타났다. E. coli은 가축분 퇴비 32종 중 2종에서 $2.62{\sim}2.85log\;CFU\;g^{-1}$ 수준으로 검출되었으며, 유기질 비료에서 $1.85log\;CFU\;g^{-1}$ 수준으로 검출되었다. 가축분 퇴비에서 Salmonella spp., E. coli O157:H7, S. aureus, L. monocytogenes, C. sakazakii 등은 검출되지 않았고, B. cereus는 3종 (9%)에서 검출되었다. 유기질 비료에 Salmonella spp., E. coli O157:H7, S. aureus, L. monocytogenes, C. sakazakii, B. cereus 등은 전혀 검출되지 않았다. 따라서 병원성 미생물을 사멸시키기 위해서는 충분한 부숙 과정이 필요하다고 판단된다.

Keywords

References

  1. Ahn, Y.S., and D.H. Shin. 1999. Antimicrobial effects of organic acids and ethanol on several foodborne microorganism. Korean J. Food Sci. Technol. 31:1315-1323.
  2. Beadet, R., C. Gagnon, J.G. Bisaillon, and M. Ishaque. 1990. Microbiological aspects of aerobic thermophilic treatment of swine waste. Appl. Environ. Microbiol. 56:971-976.
  3. Borken, W., A. Muhs, and F. Beese. 2002. Changes in microbial and soil properties following compost treatment of degraded temperate forest soils. Soil Biol. Biochem. 34:403-412. https://doi.org/10.1016/S0038-0717(01)00201-2
  4. Brinton, W.F., P. Storms, and T.C. Blewett. 2009. Occurrence and levels of fecal indicators and pathogenic bacteria in market ready recycled organic matter composts. J. food Prot. 72:332-339. https://doi.org/10.4315/0362-028X-72.2.332
  5. Burnett, S.L., and L.R. Beuchat. 2001. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J. Industrial Micro. & Biotech. 27:104-110. https://doi.org/10.1038/sj.jim.7000199
  6. Changa, C.M., P. Wang, M.E. Watson, H.A.J. Hoitink, and F.C. Michel. 2003. Assessment of the reliability of a commercial maturity test kit for composted manure. Comp. Sci. Util. 11:125-143. https://doi.org/10.1080/1065657X.2003.10702119
  7. Cote, C., A. Villeneuve, L. Lessard, and S. Quessy. 2006. Fate of pathogenic and nonpathogenic microorganisms during storage of liquid hog manure in Quebec. Livestock Sci. 102:104-210.
  8. Heinonen, H., M. Mohaibes, P. Karinen, and Koivunen. 2006. Methods to reduce pathogen microorganisms in manure. Livestock Sci. 102:248-255. https://doi.org/10.1016/j.livsci.2006.03.024
  9. Hess, T.F., I. Grdzelishvili, H.Q. Sheng, and C.J. Hovde. 2004. Heat inactivation of E. coli during manure composting. Comp. Sci. Util. 12:314-322. https://doi.org/10.1080/1065657X.2004.10702200
  10. Hill, V.R., and M.D. Sobsey. 2001. Removal of Salmonella and microbial indicators in constructed wetlands treating swine wastewater. Water Sci. and Tech. 44:215-222.
  11. Himathongkham, S., S. Bahari, H. Riemann, and D. Cliver. 1999. Survival of Escherichia coli O157:H7 and Salmonella typhimurium in cow manure and cow manure slurry. REMS Microbiol. Letters 178:251-257. https://doi.org/10.1111/j.1574-6968.1999.tb08684.x
  12. Kim, J.K. 2000. Evaluation of the management of sanitation in foods service establishments in Korea and strategies for future improvement. J. Fd. Hyg. Safety 15:186-198.
  13. Kim, S.H., J.S. Kim, J.P. Choi, and J.H. Park. 2006. Prevalence and frequency of foodborne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38:594-598.
  14. Korea Food and Drug Administration. 2008. Bacteriological Analytical Manual.
  15. Krueger, M., W. Schroedl, K. Isik, W. Lange, and L. Hageman. 2002. Effect of lactulose on the intestical microflora of periparturient sows and their piglets. Eur. J. Nut. 41:26-31.
  16. Larney, F.J., L.J. Yanke, J.J. Miller, T.A. McAllister. 2003. Fate of coliform bacteria in composted beef cattle feedlot manure. J. Environ. Qual. 32:1508-1515. https://doi.org/10.2134/jeq2003.1508
  17. Lim, J.H., Y.H. Kim, Y.T. Ahn, and H.U. Kim. 2000. Studies on the contamination and inhibition of Bacillus cereus in domestic raw milk and milk products. J. Anim. Sci. Technol. 42:215-222.
  18. Lung, A.J., C.M. Lin, J.M. Kim, M.R. Marshall, R. Nordstedt, N.P. Thompson, and C.I. Wei. 2001. Destruction of Escherichia coli O157:H7 and Salmonella enteritidis in cow manure composting. J. Food Prot. 64:1309-1314. https://doi.org/10.4315/0362-028X-64.9.1309
  19. Murinda, S.E., L.T. Nguyen, S.J. Ivey, B.E. Gillespie, R.A. Almeida, F.A. Draughon, and S.P. Oliver. 2002. Molecular characterization of Salmonella spp. isolated from bulk milk and cull dairy cow fecal sample. J. Food Prot. 65:1100-1105. https://doi.org/10.4315/0362-028X-65.7.1100
  20. Pell, A.N. 1997. Manure and microbes: Pubic and animal health problem. J. Dairy Sci. 80:2673-2681. https://doi.org/10.3168/jds.S0022-0302(97)76227-1
  21. Salanitro, J.P., I.G. Blake, and P.A. Muirhead. 1997. Isolation and identification of fecal bacteria from adult swine. Appl. Environ. Microbiol. 33:79-84.
  22. Smith, D.W., C.K. Barlow, L. Alderton, and M.F. Jacobson. 2002. Outbreak alert! Center for Science in the Public Interest. Available at: http://www.cspint.org/reports/outbreak_report.pdf
  23. Sukbir, G., S. Srinand, and C.M Frederick. 2007. Persistence of Listeria and Salmonella during swine manure treatment. Comp. Sci. Util. 15:53-62. https://doi.org/10.1080/1065657X.2007.10702311
  24. Tiquia, S.M. 2005. Microbiological parameters as indicators of compost maturity. J. Appl. Microbiol. 99:816-828. https://doi.org/10.1111/j.1365-2672.2005.02673.x
  25. Ueda, S. 1998. Occurrence and control of Bacillus cereus and other Bacillus species. pp. 21-27. In: Foodborne Bacterial Pathogens. Doyle M.P. (ed). Marcel Dekker Inc., New York, NY, USA.

Cited by

  1. Survival of Salmonella enterica and Listeria monocytogenes in Chicken and Pig Manure Compost vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.469
  2. Characterization of Microbial Community Changes in Process Affected by Physicochemical Parameters During Liquid Fertilization of Swine Waste vol.46, pp.3, 2013, https://doi.org/10.7745/KJSSF.2013.46.3.173
  3. Growth Effect and Nutrient Uptake by Application Interval of Developed Slurry Composting and Biofiltration (DSCB) Liquid Fertilizer on Kentucky Bluegrass vol.3, pp.4, 2014, https://doi.org/10.5660/WTS.2014.3.4.362
  4. Investigation of Microbiological Hazard from Korean Leeks and Cultivation Area to Establish the GAP Model vol.30, pp.1, 2015, https://doi.org/10.13103/JFHS.2015.30.1.28