DOI QR코드

DOI QR Code

Effects of Soil Organic Matter Contents, Paddy Types and Agricultural Climatic Zone on CH4 Emissions from Rice Paddy Field

벼 논에서 토양 유기물 함량, 논 유형 및 농업기후대가 CH4 배출에 미치는 영향

  • Ko, Jee-Yeon (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Lee, Jae-Saeng (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Woo, Koan-Sik (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Song, Seok-Bo (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Kang, Jong-Rae (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Seo, Myung-Chul (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Kwak, Do-Yeon (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Oh, Byeong-Gun (RDA, National Institute of Crop Science, Department of Functional Crops) ;
  • Nam, Min-Hee (RDA, National Institute of Crop Science, Department of Functional Crops)
  • 고지연 (국립식량과학원 기능성작물부) ;
  • 이재생 (국립식량과학원 기능성작물부) ;
  • 우관식 (국립식량과학원 기능성작물부) ;
  • 송석보 (국립식량과학원 기능성작물부) ;
  • 강종래 (국립식량과학원 기능성작물부) ;
  • 서명철 (국립식량과학원 기능성작물부) ;
  • 곽도연 (국립식량과학원 기능성작물부) ;
  • 오병근 (국립식량과학원 기능성작물부) ;
  • 남민희 (국립식량과학원 기능성작물부)
  • Received : 2011.09.01
  • Accepted : 2011.10.17
  • Published : 2011.10.31

Abstract

To evaluate the effects of abiotic factors of paddy fields on greenhouse gases (GHGs) emissions from rice paddy fields, $CH_4$ emission amounts were investigated from rice paddy fields by different soil organic matter contents, paddy types, and agricultural climatic zone in Yeongnam area during 3 years. $CH_4$ emission amounts according to soil organic matter contents in paddy field were conducted at having different contents of 5 soil organic matters fields (23.6, 28.7, 31.0, 34.5, and $38.0g\;kg^{-1}$), The highest $CH_4$ emission amount was recorded in the highest soil organic matters plot of $38.0g\;kg^{-1}$. High correlation coefficient (r=$0.963^{**}$) was obtained between $CH_4$ emissions from paddy fields and their soil organic matter contents. According to paddy field types, $CH_4$ emission amounts were investigated at 4 different paddy fields as wet paddy, sandy paddy, immature paddy, and mature paddy. The highest $CH_4$ emissions was recorded in wet paddy (100%) and followed as immature paddy 64.0%, mature paddy 46.8%, and sandy paddy 23.8%, respectively. For the effects of temperature on $CH_4$ emissions from paddy fields, 4 agricultural climatic zones were investigated, which were Yeongnam inland zone (YIZ), eastern coast of central zone (ECZ), plain area of Yeongnam inland mountainous zone (PMZ), and mountainous area of Yeongnam inland mountainous zone (MMZ). The order of $CH_4$ emission amounts from paddy fields by agricultural climatic zone were YIZ (100%) > ECZ (94.6%) > PMZ (91.6%) > MMZ (78.9%). The regression equation between $CH_4$ emission amounts from paddy fields and average air temperature of Jul. to Sep. of agricultural climatic zone was y = 389.7x-4,287 (x means average temperature of Jul. to Sep. of agricultural climatic zone, $R^2=0.906^*$)

영남지역에서 자연적 입지조건이 논토양 온실가스 배출에 미치는 영향을 살펴보고자, 2004년, 2005 및 2007년의 3년간 경남 밀양에 위치한 국립식량과학원 기능성작물부 시험포장과 인근 포장에서 연구를 수행하였다. 논토양에서 온실가스 배출과 관련 깊은 자연적 요인인 논토양 유기물 함량, 논 유형 (보통답, 미숙답, 습답 및 사질답) 및 농업기후대별 (영남내륙지대, 영남내륙산간지대 평지 및 산지, 동해안중부지대) 로 $CH_4$ 배출량을 조사하였다. 논토양 유기물 함량에 따른 $CH_4$ 배출량은 동일비료의 장기연용에 의하여 인접한 토양임에도 토양유기물 함량이 서로 다른 시험구에서 벼 표준재배법에 따라 동일하게 시비관리하면서 조사하였다. 논토양 $CH_4$ 배출량은 GWP 기준으로 3요소+퇴비 장기시용에 의하여 유기물 함량이 가장 높았던 처리구에서 $CH_4$ 배출량이 $3,597kg\;CO_2\;ha^{-1}\;yr^{-1}$ (100%)으로 가장 많았고, 다음으로 퇴비 72.1%, 3요소 70.5%, 3요소+규산 49.9% 및 무비 41.1%의 순으로 나타났다. 이는 토양 유기물 함량의 순서와 일치하였으며, 논토양 온실가스 배출량과 토양 유기물 함량 사이에는 r = $0.963^{**}$의 고도로 유의한 정의 상관관계가 있었다 (y = $4.3096x^{1.81314}$, 단 x는 토양 유기물함량, g $kg^{-1}$).논 유형별 $CH_4$ 배출량 (GWP) 은 토양 투수속도가 느리고, 유기물 함량이 높아 토양의 혐기상태가 강하게 유지되는 습답에서 $14,160kg\;CO_2\;ha^{-1}\;yr^{-1}$ (100%)로 가장 많았고, 미숙답은 64.0%, 보통답 46.8%, 사질답 23.8%의 순으로 나타났다. 농업기후대에 따른 논토양 $CH_4$ 배출량 (GWP)은 벼 재배기간 중 평균기온이 가장 높았던 영남내륙지대 (밀양)에서 $4,967kg\;CO_2\;ha^{-1}\;yr^{-1}$ (100%)로 가장 배출량이 많았 고, 동해안중부지대 (영덕) 94.6%, 영남내륙산간 평지 (상주 신봉) 91.7% 및 영남내륙산간 산지 (상주 화서) 78.9%의 순이었다. 기후대별 온도인자 중 7-9월 평균기온과 논토양 온실가스 배출량 사이의 회귀식은 y = 389.7x-4,287(단 x는 농업기후대별 7-9월 평균기온, $R^2=0.906^*$)이었다. 이와 같은 자연적 입지조건이 논토양 $CH_4$ 배출에 미치는 영향에 대한 이해를 높임으로써 논토양 입지조건을 고려한 온실가스 저감방법 구명 및 개발에 기초연구로 이용될 수 있을 것이다.

Keywords

References

  1. Choi, D.H., Y.S. Jung, B.C. Kim and M.S. Kim. 1985. Zoning of agroclimatic regions based on climatic characteristics during the rice planting period. Korean J. of Crop Sci. 30(3):229-235.
  2. Cicerone, R.J. and J.D. Shettler. 1981. Sources of atmospheric methane: Measurements in rice paddies and discussion. J. Geophys. Res. 86:7203-7209. https://doi.org/10.1029/JC086iC08p07203
  3. Croziere, C.R., R.D. DeLaune, and W.H.Jr. Patrick. 1994. Methane production in Missippi Deltatic Plain wetland soil as a function soil redox species. Soil and global change. Lewis Publisher, Chelsea, MI.
  4. Hahn, G.J. 1973. The coefficient of determination exposed. Chemthech, October, 609-611.
  5. Intergovernmental Panel on Climate Change (IPCC). 1996. Guidlines for national greenhouse inventories.
  6. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001 : The Scientific Basis. Cambridge University PRESS, Cambridge, UK.
  7. Kimura, M., Y. Miura, A. Watanabe, J. Murase, and S. Kuwatsuka. 1992. Methane production and its fate in paddy fields. I. Effects of rice straw application and percolation rate on the leaching of methane and other soil components into the subsoil. Soil Sci. Plant Nutr. 38:665-672. https://doi.org/10.1080/00380768.1992.10416696
  8. Kimura, M. 1997. Sources of methane emitted from paddy fields. Nutr. Cycl. Agroecosyst. 49:153-161. https://doi.org/10.1023/A:1009790920271
  9. Kim, G.Y., S.I. Park, H.S. Beom, and Y.K. Shin. 2002. Emission Characteristics of Methane and Nitrous Oxide by Management of Water and Nutrient in a Rice Paddy Soil. Korean. J. Env. Agri. 21(2):136-143. https://doi.org/10.5338/KJEA.2002.21.2.136
  10. Ko, J.Y., H.W. Kang, U.G. Kang, H.M. Park, D.K. Lim, and K.B. Park. 1998. The effects of nitrogen fertilizers and cultural patterns on methane emission from rice paddy field. Korean. J. Env. Agri. 17(3):227-233.
  11. Ko, J.Y. and H.W. Kang. 2000. The effects of cultural practices on methane emission from rice field. Nutr. Cycl. Agroecosyst. 58:311-314. https://doi.org/10.1023/A:1009867208059
  12. Ko, J.Y., J.S. Lee, M.T. Kim, H.W. Kang, U.G. Kang, D.C. Lee, Y.G. Shin, K.Y. Kim, and K.B. Lee. 2002. Effects of Cultural Practices on Methane Emission in Tillage and No - tillage Practice from Rice Paddy Fields. Korean J. Soil Sci. Fert. 35(4):216-222.
  13. Ko, J.Y., J.S. Lee, K.Y. Jung, C.Y. Dae, D.W. Lee, E.S. Yun, C.S. Kim, and S.T. Park. 2007. Effects of Soil Percolation Rate by Different Drainage Treatments on ${CH_{4}}$ and ${N_{2}O}$ Emissions from Paddy Field. Korean J. Soil Sci. Fert. 40(3):214-220.
  14. Lee, K.B., D.B. Lee, J.G. Kim, and Y.W. Kim. 1997. Effect of Rice Cultural Patterns on Methane Emission from a Korean Paddy Soil.Korean J. Soil Sci. Fert. 30(1):35-40.
  15. Lee, K.B., J.G. Kim, C.W. Park, Y.K. Shin, D.B. Lee, and J.D. Kim. 2005. Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field Korean J. Soil Sci. Fert. 38(3):150-156.
  16. Lim, C.H., S.Y. Kim, J. Gutierrez, and P.J. Kim. 2010. Impact of soil salinity on CH4 production in coastal reclaimed land. Spring symposium proceeding of Korean J. Soil Sci. Fert.:330-331.
  17. Minami, K. 1993. Methane from rice production. Res. Rep. Div. Environ. Planning. 9:243-258.
  18. Mitra, A. P., Prabhat K. G., and C. Sharma. 2002. Refinement in methodologies for methane budget estimation from rice paddies. Nutrient Cyc. in Agro. 64:14-155.
  19. Murase, J., M. Kimura and S. Kuwatsuka. 1993. Methane production and its fate in paddy fields. III. Effects of percolation on methane flux distribution to the atmosphere and the subsoil. Soil Sci. Plant Nutr. 39:63-70. https://doi.org/10.1080/00380768.1993.10416975
  20. Neue, H.U. 1993. Methane emission from rice fields. Biosciences. 43:466-474. https://doi.org/10.2307/1311906
  21. Schutz H., W. Seiler, and R. Conrad. 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry. 11:77-95.
  22. Shin, Y.K., B.L. Lee, and J.S. Suh. 1995. Influence of soil and air temperature on the diel change of methane emission in a Korean paddy soil incorporated with rice straw. Korean J. Soil Sci. Fert. 28(3):266-269.
  23. Shin, Y.K. 1996. Mitigation options for methane emission from rice fields in Korea. Ambio. 25(4):289-291.
  24. Wassmann, R., H.U. Neue, C. Bueni, R.S. Lantin, M.C.R. Alberto, L.V. Buendia, K. Bronson, H. Papen and H. Rennenberg. 1998. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant and soil. 203:227-237. https://doi.org/10.1023/A:1004357411814
  25. Watanabe, A., H. Yamada and M. Kimura. 2001. Effect of shifting growth stage and regulating temperature on seasonal variation of CH4 emission from rice. Global Biogeochem. cycles. 15:729-739. https://doi.org/10.1029/2000GB001363
  26. Watanabe, A., H. Yamada and M. Kimura. 2005. Analisis of temperature effects on seasonal and interannual variation in ${CH_{4}}$ emission from rice-planted plots. Agric. Ecosyst. Environ. 105:439-443. https://doi.org/10.1016/j.agee.2004.02.009
  27. Xie, Z., G. Liu, Q. Bei, H.Y. Tang, J.S. Liu, H.F. Sun, Y.P. Xu, J.G. Zhu, and G. Cadisch. 2010. ${CO_{2}}$ mitigation potential in farmland of China by altering current organic matter amendment pattern. Earth Science. 53(9):1351-1357.
  28. Yagi, K., K. Minami, and Y. Ogawa. 1990. Effects of water percolation on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36:599-610. https://doi.org/10.1080/00380768.1990.10416797
  29. 농촌진흥청. 1992. 한국토양총설, 농업기술연구소 토양조사자료 13. p.725.
  30. 농촌진흥청. 2010. 기후변화대응 연구 중장기 계획. p.235.

Cited by

  1. Effects of Soil Types on Methane Gas Emission in Paddy During Rice Cultivation vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1220
  2. Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.030
  3. Evaluation of Methane Emissions with Water Regime before the Cultivation Period in Paddy Fields vol.48, pp.4, 2015, https://doi.org/10.7745/KJSSF.2015.48.4.271
  4. Isolation of Bacillus sp. SHL-3 from the Dry Soil and Evaluation of Plant Growth Promoting Ability vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.036