DOI QR코드

DOI QR Code

Biochemical Methane Potential of Agricultural Waste Biomass

농산 바이오매스의 메탄 생산 퍼텐셜

  • 신국식 (한경대학교 기후변화연구센터) ;
  • 김창현 (한경대학교 바이오가스연구센터) ;
  • 이상은 (한경대학교 기후변화연구센터) ;
  • 윤영만 (한경대학교 바이오가스연구센터)
  • Received : 2011.09.02
  • Accepted : 2011.10.10
  • Published : 2011.10.31

Abstract

Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.

최근 농산 바이오매스를 이용한 혐기적 메탄생산은 가장 실질적인 바이오 에너지 생산 방법으로 주목받고 있다. 그러나 국내의 경우 폐기물 처리 측면에서 가축분뇨, 음식물쓰레기, 하수슬러지에 대한 혐기소화 연구가 주를 이루고 있으며, 농업생산과정에서 발생하는 각종 농산 바이오매스에 대한 혐기소화 연구는 매우 미흡한 실정이다. 특히 국내에서 농산 바이오매스의 혐기적 매탄 생산 퍼텐셜은 측정 방법이 표준화되어 있지 않아 다양한 연구자들의 연구결과를 비교 활용하는데 어려움이 있어 왔다. 외국의 경우 독일은 VDI 4630, 미국은 ASTM E2170-01을 혐기적메탄 생산 퍼텐셜 및 유기물 분해율 분석의 표준분석 방법으로 활용하고 있다. 따라서 독일과 미국의 메탄생산 퍼텐셜 분석법을 비교 검토하여 메탄 생산 퍼텐셜을 정의하고, 분석방법, 영향인자, 기술적인 계산 방법등을 고찰하였다. 한편 국내외 농산 바이오매스의 메탄 생산 퍼텐셜 측정 현황을 살펴보고자, 국내의 경우에는 1980년대에 실시되었던 볏짚 등의 18종의 농산 바이오매스와 식품산업부산물 등의 연구 자료를 조사하였으며, 국외는 43개 농산바이오매스에 대하여 곡류, 채소류, 특용작물, 과수, 기타작물로 분류하고, 사료작물인 사탕수수, 사탕무, 옥수수 등은 에너지 작물로 분류하여 216건의 메탄 생산 퍼텐셜에 대한 연구자료를 조사하였다.

Keywords

References

  1. Angelidaki, I. and W. Sanders. 2004. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3(2):117. https://doi.org/10.1007/s11157-004-2502-3
  2. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science & Technology. Vol. 59(5):927-934. https://doi.org/10.2166/wst.2009.040
  3. ASTM. 2008. E2170-01 Standard test method for determining the anaerobic biodegradation potential of organic chemicals. American Society for Testing and Materials. West Conshohocken, PA.
  4. Badger, D.M., M.J. Bogue, and D.J. Stewart. 1979. Biogas production from crops and organic wastes. 1. Results of batch digestions. New Zealand J. Sci. 22:11-20
  5. Bauer, A., C. Leonhartsberger, P. Bosch, B. Amon, A. Friedl, and T. Amon. 2010. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Techn Environ Policy 12:153-161. https://doi.org/10.1007/s10098-009-0236-1
  6. Boyle, W.C. 1976. Energy recovery from sanitary landflls - a review. In: Schlegel, H.G. and S. Barnea. (Hrsg.): Microbial Energy Conversion: Oxford, Pergamon Press.
  7. Buffiere, P., D. Loisel, N. Bernet, and J-P. Delgenes. 2006. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Science & Technology. Vol. 53, No. 8:233-241. https://doi.org/10.2166/wst.2006.254
  8. Buswell, A.M. and H.F. Müller. 1952. Mechanism of methane fermentation. Ind. Eng. Chem. 44:550-552. https://doi.org/10.1021/ie50507a033
  9. Cho, J,K., J.P. Lee, J.S. Lee, S.C. Park, and H.N. Chang. 1994. A study on the solid state anaerobic digestion of food waste. J. Korean Soild Wastes Engineering Society. Vol. 11. No. 4, 556-568.
  10. Chynoweth D.P., J.M. Owen, and R. Legrand. 2001. Renewable methane from anaerobic digestion of biomass. Renewable Energy. 22:1-8. https://doi.org/10.1016/S0960-1481(00)00019-7
  11. Chynoweth, D.P., C.E. Turick, J.M. Owens, D.E. Jerger, and M.W. Peck. 1993. Biochemical methane potential of biomass waste feedstocks. Biomass and Bioenergy. Vol. 5. Issue 1:95-111. https://doi.org/10.1016/0961-9534(93)90010-2
  12. Gunaseelan, V.N. 1997. Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy. Vol. 13. No. 1/2, 83-114. https://doi.org/10.1016/S0961-9534(97)00020-2
  13. Gunaseelan, V.N. 2004. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy. 26:389-399. https://doi.org/10.1016/j.biombioe.2003.08.006
  14. Hong, S.K. 2007. Biomass utilization strategies. Rural and Environmental Engineering Journal. 95:15-32 (in Korean).
  15. Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes. Norris, J.R., and D.W. Ribbons. Method in microbiology. Vol. 38:117-132.
  16. Jagadabhi, P.S., A. Lehtomäki, and J. Rintala. 2008. Codigestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solid of the digestate. Environmental Technology. Vol. 29. Issue 10:1085-1093. https://doi.org/10.1080/09593330802180385
  17. Jeong, T.Y., J.H. Lee, H.K. Chung, H.J. Cha, and S.S. Choi. 2009. Methane production using peel-type fruit wastes and sludge in batch anaerobic digestion process. J. Korean Ind. Eng. Chem. Vol. 20. No. 5, 542-546.
  18. Jewell, W.J., R.J. Cummings, and B.K. Richards. 1993. Methane fermentation of energy crops: Maximum conver sion kinetics and in situ biogas purification. Biomass and Bioenergy. Vol. 5. Issue 3-4: 261-278. https://doi.org/10.1016/0961-9534(93)90076-G
  19. Kim, C.H. and Y.M. Yoon. 2007. The research trend concerned with energy conversion of livestock waste using biogas production facility. Rural and Environmental Engineering Journal. 95:105-117 (in Korean).
  20. Lane, A.G. 1984. Laboratory scale anaerobic digestion of fruit and vegetable solid waste. Biomass. Vol. 5. Issue 4: 245-259. https://doi.org/10.1016/0144-4565(84)90072-6
  21. Lee, C.Y. 2007. Characteristic of methane production from piggery manure using anaerobic digestion. J. of Korea. Vol. 15. No. 3, 113-120.
  22. Lehtomaki, A., K. Chistensson, and L. Bjornsson. 2004. Pilot Scale two-stage anaerobic digestion of energy crops. Proceedings Anaerobic Digestion Conference: 1763-1766.
  23. Lehtomaki, A., O.M. Ronkainen, and J.A. Rintala. 2005. Developing storage methods for optimised methane production from energy crops in northern conditions. ADSW 2005 Conference Proceedings Vol. 1, 101-108
  24. Lehtomaki, A., T.A. Viinikainen, and J.A. Rintala. 2008. Screening boreal energy crops and crop residues for methane biofuel production. Biomass and Bioenergy. 32:541-550. https://doi.org/10.1016/j.biombioe.2007.11.013
  25. Lim, J.H. 1980. Material test for the methane production of industrial wastes. RDA. Report of National Academy of Agricultural Science. Nongyeon-Nongyeol-2: 596-602 (in Korean).
  26. Lim, J.H. and Y.D. Park. 1982a. The investigation of methane production by agricultural byproducts. RDA. Report of National Academy of Agricultural Science. Nongyeon-Nonghwa-14: 205-211 (in Korean).
  27. Lim, J.H. and Y.D. Park. 1982b. The investigation of methane production by industrial wastes. RDA. Report of National Academy of Agricultural Science. Nongyeon-Nonghwa-14: 212-219 (in Korean).
  28. Lim, J.H. and Y.D. Park. 1983. The investigation of methane production by agricultural byproducts. RDA. Report of National Academy of Agricultural Science. Nongyeon-Nonghwa-15:102-113 (in Korean).
  29. ME. 2009. The fact of biogas plant using organic waste (in Korean).
  30. MKE. 2008. the 3rd basic plan for the use and development of new-renewable energy (2009-2030). (in Korean).
  31. Owen, W.P., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. Vol. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  32. Paavola, T., A. Lehtomaki, M. Seppala, and J. Rintala. 2006. Methane production from reed canary grass. Jyvaskyla University of Applied science.
  33. Park, N.B., S.H. Jeong, and H.M. Lee. 2001. Food waste and sewage sludge mixture treatment using anaerobic batch reactor. J. Korean Soild Wastes Engineering Society. Vol. 18. No 4, 381-388.
  34. Perez, L., C. Kirchmayr, R. Neureiter, and M. Braun. 2005. Effect of physical and chemical pretreatments on methane yield from maize silage and grains. ADSW 2005 Conference Proceedings Vol 2.
  35. Pouech, P., H. Fruteau, and H. Bewa. 1998. Agricultural crops for biogas production on anaerobic digestion plants. Biomass for energy and industry: 163-165.
  36. Raposo, F., C.J. Banks, I. Siegert, S. Heaven, and R. Borja. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize batch tests. Process Biochemistry 41:1444-1450. https://doi.org/10.1016/j.procbio.2006.01.012
  37. RDA. 2010. RDA Notification No. 2010-33; Specification and standard of fertilizer manufacturing (in Korean).
  38. Rincon, B., C. J. Banks, and S. Heaven. 2010. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice. Bioresource Technology. 101:8179-8184. https://doi.org/10.1016/j.biortech.2010.06.039
  39. Romano, R.T., R. Zhang, S. Teter, and J.A. McGrarvey. 2009. The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresource Technology 100:4564-4571. https://doi.org/10.1016/j.biortech.2008.12.065
  40. Sharma, S.K., I.M. Mishra, M.P. Sharma, and J.S. Saini. 1989. Effect of particle size on biogas generation from biomass residues. Biomass. Vol. 17. Issue 4: 251-263.
  41. Shelton, D.R. and J.M. Tiedje. 1984. General method for determining anaerobic biodegradation potential. Appl. & Environ. Microbiol. Vol. 47, 850-857.
  42. Tong, X., L.H. Smith, and P.L. McCarty. 1990. Methane fermentation of selected lignocellulosic material. Biomass. Vol. 21. Issue 4: 239-255. https://doi.org/10.1016/0144-4565(90)90075-U
  43. VDI 4630. 2006. Fermentation of organic materials. Characterisation of the substrates, sampling, collection of material data, fermentation tests. VDI-Handbuch Energietechnik.
  44. Yoon, Y.M., C.H. Kim, J.S. Yoo, and S.W. Kim. 2011. The performance of anaerobic co-digester of swine slurry and food waste. Korean J. Soil Sci. Fert. 44(1):104-111. https://doi.org/10.7745/KJSSF.2011.44.1.104
  45. Zubr, J. 1986. Mathanogenic fermentation of fresh and ensiled plant materials. Biomass. Vol. 11. Issue 3: 159-171. https://doi.org/10.1016/0144-4565(86)90064-8

Cited by

  1. Effect of Substrate to Inoculum Ratio on Biochemical Methane Potential in the Thermal Pretreatment of Piggery Sludge vol.45, pp.4, 2012, https://doi.org/10.7745/KJSSF.2012.45.4.532
  2. Study for Clean Energy Farming System by Mass and Energy Balance Analysis in the Controlled Cultivation of Vegetable Crop (Cucumber) vol.45, pp.2, 2012, https://doi.org/10.7745/KJSSF.2012.45.2.280
  3. The Determination of Anaerobic Biodegradability Rates Livestock Byproducts Using Double First-Order Kinetic Model vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.542
  4. Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse vol.46, pp.4, 2013, https://doi.org/10.7745/KJSSF.2013.46.4.296
  5. A Study on the Biogasification of Municipal and Industrial Wastewater Sludge vol.15, pp.9, 2014, https://doi.org/10.14481/jkges.2014.15.9.5
  6. Effect of Organic Content on Anaerobic Biodegradability by Agricultural Waste Biomass vol.47, pp.3, 2014, https://doi.org/10.7745/KJSSF.2014.47.3.155
  7. Studies of Pretreatment Mehtods for Additional Reduction of Sewage Sludge vol.15, pp.10, 2014, https://doi.org/10.14481/jkges.2014.15.10.15
  8. Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge vol.35, pp.2, 2016, https://doi.org/10.5338/KJEA.2016.35.2.12
  9. Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1086