DOI QR코드

DOI QR Code

Investigation of Siderophore production and Antifungal activity against Phytophthora capsici as related to Iron (III) nutrition by Lysobacter antibioticus HS124

  • Ko, Hyun-Sun (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center) ;
  • Tindwa, Hamisi (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center) ;
  • Jin, Rong De (Agricultural Environment and Resources Research Center, Jilin Academy of agricultural Sciences) ;
  • Lee, Yong-Seong (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center) ;
  • Hong, Seong-Hyun (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center) ;
  • Hyun, Hae-Nam (Major of plant resources & environment, Cheju National University) ;
  • Nam, Yi (Ansung Training Institute, National Agricultural Cooperative Federation) ;
  • Kim, Kil-Yong (Department of Biological Chemistry, Chonnam National University, Environment-Friendly Agriculture Research Center)
  • Received : 2011.07.20
  • Accepted : 2011.08.16
  • Published : 2011.08.31

Abstract

Lysobacter antibioticus HS124 isolated from pepper rhizosphere soil produced catechol type siderophore. Purified siderophore by Diaion HP-20 and silica gel column chromatography showed several hydroxyl functional groups adjacent to benzene rings by analysis of $^1H$ NMR spectroscopy. The strain HS124 showed different activities to suppress Phytophthora capsici with different concentrations of exogenous Fe (III) in minimal medium where antifungal activity with $100{\mu}M$ Fe (III) was approximately 1.5 times higher than in absence of Fe (III). Bacterial population in this Fe (III)-amended medium was also highest with $8.9{\times}10^8\;CFU\;ml^{-1}$ which also corresponded to the strongest siderophore activity. When grown in rich medium (minimal medium with N, $P_2O_5K_2O$ and glucose), HS124 exhibited approximately 2 times stronger antifungal activity compared to minimal medium. In pot trials, treatments of bacterial culture grown in rich medium with (C1) or without (C2) $100{\mu}M$ Fe (III) exhibited a high protection of pepper plants from disease, compared to medium only with (M1) or without (M2) $100{\mu}M$ Fe (III). Especially, treatment C1 showed the best disease control effect of about 70 %. Thus, the strain HS124 should be recommended as a potential biocontrol agent against P. capsici in pepper.

Keywords

References

  1. Arnow, L.E. 1937. Colorimetric determination of the compounds of 3,4-dihydroxyphenylalanine-tyrosine mixture. J Biol Chem 118:531-537.
  2. Bolton, H., J.K. Fredrickson, and L.F. Elliott. 1993. Microbial ecology of the rhizosphere. In: Metting, F.B. (Ed). Soil microbial ecology: Applications in Agricultural and Environmental Management. Marcel Dekker New York. p. 27-63.
  3. Bultreys, A. and I. Gheysen. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl Environ Microbiol 66:325-331. https://doi.org/10.1128/AEM.66.1.325-331.2000
  4. Chaiharn, M., S. Chunhaleuchanon, and S. Lumyong. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J. Microbiol & Biotechnol 25(11):1919-1928. https://doi.org/10.1007/s11274-009-0090-7
  5. Cruz, R., M.E. Ariasand, and J. Soliveri. 1999. Nutritional requirement for the production of pyrazoloisoquinolinone antibiotics by Streptomyces griseocirneus. NCIMB 40447. Appl. Microbiol. Biotechnol. 53:115-119. https://doi.org/10.1007/s002530051623
  6. Csaky, T. 1948. On the estimation of bound hydroxylamine. Acta. Chemica. Scandinavica. 2:450-454. https://doi.org/10.3891/acta.chem.scand.02-0450
  7. Keel, C., C. Voisard, C.H. Berling, G. Kahr, and G. Defago. 1989. Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584-589. https://doi.org/10.1094/Phyto-79-584
  8. Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee, and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-Hydroxylacetic acid and several lytic enzymes. Curr. Microbiol. 59:608-615. https://doi.org/10.1007/s00284-009-9481-0
  9. Kunimoto, R,K., M. Aragaki, J.E. Hunter, and W.H. Ko. 1976. Phytophthora capsici, corrected name for the cause of Phytophthora blight of macadamia racemes. Phytopathology 66:546-548. https://doi.org/10.1094/Phyto-66-546
  10. Kraemer, S.M. 2005. Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science 66:3-18.
  11. Laine, M.H., M.T. Karwoski, L.B. Raaska, and T.M. Mattila. 1996. Antimicrobial activity of Pseudomonas spp. against food poisoning bacteria and moulds. Lett. Appl. Microbiol. 22:214-218. https://doi.org/10.1111/j.1472-765X.1996.tb01146.x
  12. Cho, M.Y. 2007. Biocontrol of Phytophthora blight (Phytophthora capsici) in pepper by Lysobacter enzymogenes LE429. A Master's thesis, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea pp. 50.
  13. Loper, J.E., and M.D. Henkels. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63:99-105.
  14. Loper, J.E., and M.D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:5357- 5363.
  15. Macagnan, D., R.S. Romeiro, A.W.V. Pomella, and J.T. deSouza. 2008. Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol. Control 47:309-314. https://doi.org/10.1016/j.biocontrol.2008.08.016
  16. Meyer, J.M. and M.A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicalchemical properties. J. Gen. Microbiol. 107:319-328. https://doi.org/10.1099/00221287-107-2-319
  17. Meyers, D., R. Cooper, L. Dean, J.H. Johnson, D.S. Slusarchyk, W.H. Trejo, and P.D. Singh. 1985. Catacandins, novel anticandidal antibiotics of bacterial origin. J. Antibiot. 38:1642-1648. https://doi.org/10.7164/antibiotics.38.1642
  18. Meziane, H., I. Van Der Sluis, L.C. Van Loon, M. Hofte, and P.A.H.M Bakker. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6:177-185. https://doi.org/10.1111/j.1364-3703.2005.00276.x
  19. Nishio, T. and Y. Ishida. 1989. Distribution of iron solubilizing bacteria in sediment of a small lagoon. Nippon Suisan Gakkaishi 55(11):1955-1960. https://doi.org/10.2331/suisan.55.1955
  20. Pal, K.K., K.V. Tilak, A.K. Saxena, R. Dey, and C.S. Singh. 2001. Suppression of maize root disease caused by Macrophomina phaseolina, Fusarium moniliforme and F. graminearum by plant growth promoting rhizobacteria. Microbiol Res.156:209-223. https://doi.org/10.1078/0944-5013-00103
  21. Payne, S.M. 1994. Detection, isolation, and characterization of siderophore. Method Enzymol. 235:329-344. https://doi.org/10.1016/0076-6879(94)35151-1
  22. Ristaino, J.B. 1990. Intra specific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology 80:1253-1259. https://doi.org/10.1094/Phyto-80-1253
  23. Samir, S., K.Vaidehi, and D. Anjana. 1992. Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr Microbiol 25:347-351. https://doi.org/10.1007/BF01577233
  24. Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  25. Stepnaya, O.A., I.M. Tsfasman, I.A. Chaika, T.A. Muranova, and I.S. Kulaev. 2008. Extracellular yeast-lytic enzymes of the bacterium Lysobacter sp. XL 1. Biochemistry 73:310-314.
  26. Van Rij, E.T., M. Wesselink, T.F.C. Chin-A-Woeng, G.V. Bloemberg, and B.J.J. Lugtenberg. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. The American Phytopathological Society 17:557-566.
  27. Vilches, C., C. Mendez, C. Hardission, and J.A. Salas. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136:1447-1454. https://doi.org/10.1099/00221287-136-8-1447
  28. Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. of Phytopathol. 26:379-407. https://doi.org/10.1146/annurev.py.26.090188.002115

Cited by

  1. Draft Genome Sequence of a Chitinase-Producing Biocontrol Bacterium, Lysobacter antibioticus HS124 vol.20, pp.3, 2014, https://doi.org/10.5423/RPD.2014.20.3.216
  2. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils vol.6, 2015, https://doi.org/10.3389/fmicb.2015.01243