DOI QR코드

DOI QR Code

Growth and Biomass Production of Fast Growing Tree Species Treated with Slurry Composting and Biofiltration Liquid Fertilizer

SCB액비가 속성수의 생장 및 biomass 생산에 미치는 영향

  • Kim, Hyun-Chul (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Yeo, Jin-Kie (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Koo, Yeong-Bon (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Shin, Han-Na (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Choi, Jin-Young (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Lee, Heon-Ho (Department of Forest Resources, Yeungnam University)
  • 김현철 (국립산림과학원 산림자원육성부) ;
  • 여진기 (국립산림과학원 산림자원육성부) ;
  • 구영본 (국립산림과학원 산림자원육성부) ;
  • 신한나 (국립산림과학원 산림자원육성부) ;
  • 최진용 (서울대학교 조경지역시스템공학부) ;
  • 이헌호 (영남대학교 산림자원학과)
  • Received : 2010.08.17
  • Accepted : 2011.03.09
  • Published : 2011.04.30

Abstract

Fifteen clones of poplars, 2 clones of willows, and yellow poplar were used to evaluate the effects of 5 treatments such as SCBLF (slurry composting and biofiltration liquid fertilizer), general slurry liquid fertilizer, chemical fertilizer, groundwater, and control (no treatment) on vitality, growth performance, and biomass production. Five cuttings for each tree species were planted in 3 replications. After planting cuttings, a coppice was induced by cutting off stems at 10cm above the ground. Data were collected for first growing season and trees were harvested at the end of October. Maximum mortality rate i.e. 96% was recorded in the cuttings treated with groundwater and minimum 92% with control (no treatment). In all tree species, sprouting of stump was not differ significantly among the treatments. Total nitrogen concentrations of leaves and stump sprouts were higher in the treatment of SCBLF than the control, 26.6% and 22.9%, respectively. Biomass production was highest in the stumps treated with chemical fertilizer, $1.98Mg\;ha^{-1}\;year^{-1}$, and lowest in control ($1.34Mg\;ha^{-1}\;year^{-1}$).

SCB액비, 저장액비, 화학비료, 지하수 및 무처리에 따른 포플러 및 버드나무 클론, 백합나무의 생존율은 전체 평균 94.4%로 나타나 양호하였으며, 잎과 줄기의 비율은 각각 63.5%, 36.5%로 매년수확구의 식재당년 지상부 biomass는 잎의 비율이 높았다. 처리구별 줄기발생 수는 SCB액비, 저장액비, 화학비료, 지하수 및 무처리구가 평균 4.2, 4.6, 4.5, 4.7, 4.9개로 크게 차이가 나타나지 않았으며 버드나무 클론들의 줄기 수가 포플러 클론 및 백합나무 보다 많았다. 줄기직경과 지상부 biomass에 대하여 개체당 유도된 회귀모델을 통해 추정된 biomass 생산량은 화학비료>저장액비>지하수>SCB액비>무처리구 순으로 나타났다. 수종 및 클론별 지상부 biomass 생산량은 모든 처리구에서 현사시 클론들이 우수하게 나타났으며, SCB액비 처리에 따른 잎과 줄기의 질소함량을 분석한 결과 무처리구 보다 질소함 량이 높게 나타나 SCB액비에 함유된 질소를 체내에 흡수하는 것으로 판단된다. 따라서, SCB액비를 biomass 매년수확구에 처리한 결과 화학비료, 저장액비, 지하수 처리구보다 생산량이 적게 나타났지만 무처리구 보다는 생산량이 증가하여 향후 처리방법이나 적정 처리량 등을 구명하여 적용한다면 화학비료와 비슷한 효과를 얻을 수 있고 가축분뇨 처리비용도 절감할 수 있을 것으로 판단된다. 그러나 본 연구는 biomass 매년수확구의 식재당년의 결과이며, 식재한 묘목의 수령이 증가하고 입지환경에 적응되면 바이오매스 생산량도 대폭 증가할 것이므로 이와 같은 연구가 반복적으로 수행되어야 보다 확실한 결과를 얻을 수 있을 것으로 생각된다.

Keywords

References

  1. Baskerville, G.L. 1972. Use of logarithmic regression in the estimation of plant biomass. Can. J. Forest Res. 2:49-53. https://doi.org/10.1139/x72-009
  2. Dauen, A. and D. Quilez. 2004. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a mediterranean irrigated environment. Eur. J. Agron. 21:7-19. https://doi.org/10.1016/S1161-0301(03)00056-X
  3. GARES. 2008. Methods of soil and compost analysis. Gyeonggido Agricultural Research and Extension Services, Hwaseong, Korea.
  4. Ham, S.K., Y.S. Kim, T.S. Kim, K.S. Kim, and C.H. Park. 2009. The effect of SCB (Slurry compostion and biofilter) liquid fertilizer on growth of creeping bentgrasss. Kor. Turfgrass Sci. 23:97-100.
  5. Hountin, J.A., D. Couillard, and A. Karam. 1997. Soil carbon, nitrogen and phosphorus contents in maize plots after 14years of pig slurry applications. J. Agri. Sci. 129:187-191. https://doi.org/10.1017/S0021859697004504
  6. Jensen, L.S., I.S. Pedersen, T.B. Hansen, and N.E. Nielsen. 2000. Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur. J. Agron. 12:23-35. https://doi.org/10.1016/S1161-0301(99)00040-4
  7. Jeong, B.R., J.B. Chung, S.H. Kim, Y.D. Lee, H.J. Cho, and N.J. Baek. 2003. Rhizosphere enhances moval of organic matter and nitrogen from river water in floodplain filtration. Korean J. Soil Sci. 36:8-15.
  8. Kim, J.S., K.B. Lee, D.B. Lee, S.B. Lee, and S.Y. Na. 2004. Influence of liquid pig manure on rice growth and nutrient movement in paddy soil under different drainage conditions. Korean J. Soil Sci. Fert. 37:97-103.
  9. Koo, Y.B. and J.K. Yeo. 2003. The status and prospect of poplar research in Korea. J. Kor. For. En. 22:1-17.
  10. Koo, Y.B., E.R. Noh, S.K. Lee, and C.S. Kim. 1992. Selection of superior hybrid poplar clones for aboveground biomass production. Res. Rep. For. Gen. Res. Inst. Korea 28:90-95.
  11. Labrecque, M. and T.I. Teodorescu. 2005. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biom. Bioe. 29:1-9. https://doi.org/10.1016/j.biombioe.2004.12.004
  12. Lee, J.E. and S.W. Heo. 2009. A study on recycling systems of livestock excretions and benefits analysis. Korean J. Agri. Manage. Poli. 36:371-393.
  13. Lim, T.J., S.D. Hong, S.H. Kim, and J.M. Park. 2008. Evaluation of yield and quality from red pepper for application rates of pig slurry composting biofiltration. Korean J. Envir. Agri. 27:171-177. https://doi.org/10.5338/KJEA.2008.27.2.171
  14. Misselbrook, T.H., K.A. Smith, D.R. Jackson, and S.L. Gilhespy. 2004. Ammonia emissions from irrigation of dilute pig slurries. Biosys. Engi. 89(4):473-484. https://doi.org/10.1016/j.biosystemseng.2004.08.015
  15. Park, J.H., J.K. Yeo, Y.B. Koo, W.W. Lee, H.C. Kim, and C.H. Park. 2008. Effects of slurry composting and biofiltration liquid fertilizer on growth characteristic of poplar clones in a reclaimed land mounding soil. Korean J. Soil Sci. Fert. 41:318-323.
  16. Paschold, J.S., B.J. Wienhold, D.L. McCallister, and R.B. Ferguson. 2008. Crop nitrogen and phosphorus utilization following application of slurry from swine fed traditional or low phytate corn diets. Agron. J. 100:997-1004. https://doi.org/10.2134/agronj2007.0248

Cited by

  1. Status of Anaerobic Digestion Facility for Pig-slurry in Korea vol.20, pp.1, 2014, https://doi.org/10.11109/JAES.2014.20.1.27
  2. Organosolv Pretreatment of Slurry Composting and Biofiltration of Liquid Fertilizer-Treated Yellow Poplar for Sugar Production vol.43, pp.5, 2015, https://doi.org/10.5658/WOOD.2015.43.5.578
  3. Comparison of methane emission characteristics in air-dried and composted cattle manure amended paddy soil during rice cultivation vol.197, 2014, https://doi.org/10.1016/j.agee.2014.07.013
  4. Utilization of Compost Bed for the Treatment of Anaerobic Digestion Wastewater vol.20, pp.2, 2014, https://doi.org/10.11109/JAES.2014.20.2.69
  5. Reduction of Pollutant Load by Small Pond in a Rice Paddy Applied with Pig Manure Compost vol.22, pp.4, 2014, https://doi.org/10.17137/Korrae.2014.22.4.021
  6. Effect of Aeration on Fertilization and Sludge Accumulation of Pig Slurry vol.19, pp.1, 2013, https://doi.org/10.11109/JAES.2013.19.1.047
  7. A Study on Filtration Effect of Anaerobic Digestion Wastewater by Composition of Filtration Layer Materials vol.19, pp.1, 2013, https://doi.org/10.11109/JAES.2013.19.1.039
  8. Impact Assessment of Liquid Manure Application on Soil and Shallow Groundwater in Poplar Experimental Site vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.025
  9. Growth and Productivity Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus vol.7, 2016, https://doi.org/10.3389/fpls.2016.01440
  10. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS vol.56, pp.4, 2018, https://doi.org/10.1007/s11099-018-0801-0
  11. Integration of phosphorus with organic manures and plant residues on growth and production of hybrid rice pp.1532-4087, 2019, https://doi.org/10.1080/01904167.2018.1554679