DOI QR코드

DOI QR Code

Inhibitory Effects of Total Ginseng Saponin on Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

  • Jang, Seok-Jeong (Department of Neurosurgery, Chosun University School of Medicine) ;
  • Lim, Hyo-Jeong (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Lim, Dong-Yoon (Department of Pharmacology, Chosun University School of Medicine)
  • Received : 2010.12.25
  • Accepted : 2011.02.09
  • Published : 2011.06.29

Abstract

There seems to be some controversy about the effect of total ginseng saponin (TGS) on the secretion of catecholamines (CA) from the adrenal gland. Therefore, the present study aimed to determine whether TGS can affect the CA release in the perfused model of the adrenal medulla isolated from spontaneously hypertensive rats (SHRs). TGS (15-150 ${\mu}g/mL$), perfused into an adrenal vein for 90 min, inhibited the CA secretory responses evoked by acetylcholine (ACh, 5.32 mM) and high $K^+$ (56 mM, a direct membrane depolarizer) in a dose- and time-dependent fashion. TGS (50 ${\mu}g/mL$) also time-dependently inhibited the CA secretion evoked by 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP; 100 ${\mu}M$, a selective neuronal nicotinic receptor agonist) and McN-A-343 (100 ${\mu}M$, a selective muscarinic M1 receptor agonist). TGS itself did not affect basal CA secretion (data not shown). Also, in the presence of TGS (50 ${\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator (50 ${\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of TGS (50 ${\mu}g/mL$) and N${\omega}$-nitro-L-arginine methyl ester hydrochloride [an inhibitor of nitric oxide (NO) synthase, 30 ${\mu}M$], the inhibitory responses of TGS on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid, and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of TGS-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of TGS (150 ${\mu}g/mL$) was greatly elevated compared to the corresponding basal released level. Taken together, these results demonstrate that TGS inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal medulla of the SHRs. It seems that this inhibitory effect of TGS is mediated by inhibiting both the influx of $Ca^{2+}$ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade, without the enhancement effect on the CA release. Based on these effects, it is also thought that there are some species differences in the adrenomedullary CA secretion between the rabbit and SHR.

Keywords

References

  1. Lim D, Park K, Kim K, Lee K, Moon J, Kim Y. Influence of total ginseng saponin on secretion of catecholamines in the isolated adrenal gland of rabbits. Korean Biochem J 1987;20:230-238.
  2. Lim DY, Park KB, Kim KH, Choi CH, Bae JW, Kim MW. Studies on secretion of catecholamines evoked by panaxadiol in the isolated rabbit adrenal gland. Korean J Pharmacol 1988;24:31-42.
  3. Lim DY, Choi CH, Kim CD, Kim KH, Kim SB, Lee BJ, Chung MH. Influnce of Panaxatriol-type saponin on secretion of catecholamines from isolated perfused rabbit adrenal gland. Arch Pharm Res 1989;12:166-175. https://doi.org/10.1007/BF02855549
  4. Hong SP, Chi H, Cho SH, Lee YK, Woo SC, Kim IS, Oh SH, Yang WH, Lim DY. Influence of total ginseng saponin on nicotinic stimulation-induced catecholamine secretion from the perfused rat adrenal gland. Korean J Hypert 1999;5:159-168.
  5. Kudo K. Effects of red ginseng fractions on catecholamine secretion from bovine adrenal medullary cells. J Med Pharm Soc Wakan-Yaku 1992;9:236-239.
  6. Tachikawa E, Kudo K, Kashimoto T, Takahashi E. Ginseng saponins reduce acetylcholine-evoked Na+ influx and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Exp Ther 1995;273:629-636.
  7. Kudo K, Tachikawa E, Kashimoto T, Takahashi E. Properties of ginseng saponin inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Eur J Pharmacol 1998;341:139-144. https://doi.org/10.1016/S0014-2999(97)01350-2
  8. Tachikawa E, Kudo K, Nunokawa M, Kashimoto T, Takahashi E, Kitagawa S. Characterization of ginseng saponin ginsenoside-Rg(3) inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Biochem Pharmacol 2001;62:943-951. https://doi.org/10.1016/S0006-2952(01)00743-2
  9. Kim ND, Kang SY, Schini VB. Ginsenosides evoke endothelium- dependent vascular relaxation in rat aorta. Gen Pharmacol 1994;25:1071-1077. https://doi.org/10.1016/0306-3623(94)90121-X
  10. Han KH, Choe SC, Kim HS, Sohn DW, Nam KY, Oh BH, Lee MM, Park YB, Choi YS, Seo JD et al. Effect of red ginseng on blood pressure in patients with essential hypertension and white coat hypertension. Am J Chin Med 1998;26:199-209. https://doi.org/10.1142/S0192415X98000257
  11. Jeon BH, Kim CS, Kim HS, Park JB, Nam KY, Chang SJ. Effect of Korean red ginseng on blood pressure and nitric oxide production. Acta Pharmacol Sin 2000;21:1095-1100.
  12. Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim KJ, Kim SH, Chang SJ, Nam KY. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats.Gen Pharmacol 2000;35:135-141. https://doi.org/10.1016/S0306-3623(01)00096-9
  13. Sung J, Han KH, Zo JH, Park HJ, Kim CH, Oh BH. Effects of red ginseng upon vascular endothelial function in patients with essential hypertension. Am J Chin Med 2000;28:205-216. https://doi.org/10.1142/S0192415X00000258
  14. Siegel RK. Ginseng abuse syndrome. Problems with the panacea. JAMA 1979;241:1614-1615. https://doi.org/10.1001/jama.241.15.1614
  15. Baldwin CA, Anderson LA, Phillipson JD. What pharmacists should know about ginseng. Pharm J 1986;237:583-586.
  16. Miller LG. Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions. Arch Intern Med 1998;158:2200-2211. https://doi.org/10.1001/archinte.158.20.2200
  17. Klepser TB, Klepser ME. Unsafe and potentially safe herbal therapies. Am J Health Syst Pharm 1999;56:125-138.
  18. Lim DY, Park KB, Kim KH, Moon JK, Lee KS, Kim YK, Chung YH, Hong SP. Influnce of total ginseng saponin on the blood pressure of the rat. Korean Circ J 1987;17:491-499.
  19. Sohn ES, Park SC, Huh BY, Lee CK, Rhim HK, Ham JS, Young CM, Han CS, Park CW, Kim HJ. An animal experiental study on the effect of ginseng on blood pressure and plasma renin activity in spontaneously hypertensive rat. J Korean Med Assoc 1979;22:731-745.
  20. Sohn ES, Park SC, Huh BY, Lee DH, Rhim HK, Young CM, Han CS, Song BS, Kim SJ, Park CW, et al. An animal experimental study of the effect of Korean ginseng on body weight and blood pressure in spontaneously hypertensive rat with oral administration. J Korea Med Assoc 1980;23:37-48.
  21. Seok SE, Park CH, Nam SH, Choi HS, Lee JI, Lee DH, Huh BY, Soh ES. An experimental study on the antihypertensive effect of Korea ginseng to spontanously hypertensive rats (SHR) in labile stage of hypertension. J Korean Med Assoc 1981;24:509-515.
  22. Sokabe H, Kishi K, Watanabe TX. Effects of Korean red ginseng powder (GP) administered orally, on blood pressure in hypertensive rats. In: Korea Ginseng Research Institute. Proceeding of the 4th International Ginseng Symposium; Seoul, Korea, 1984. p.127-132.
  23. Stavro PM, Woo M, Leiter LA, Heim TF, Sievenpiper JL, Vuksan V. Long-term intake of North American ginseng has no effect on 24-hour blood pressure and renal function. Hypertension 2006;47:791-796. https://doi.org/10.1161/01.HYP.0000205150.43169.2c
  24. Kim ND, Kim EM, Kang KW, Cho MK, Choi SY, Kim SG. Ginsenoside $Rg_3$ inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Br J Pharmacol 2003;140:661-670. https://doi.org/10.1038/sj.bjp.0705490
  25. Han K, Shin IC, Choi KJ, Yun YP, Hong JT, Oh KW. Korea red ginseng water extract increases nitric oxide concentrations in exhaled breath. Nitric Oxide 2005;12:159-162. https://doi.org/10.1016/j.niox.2005.02.001
  26. Kim ND, Kang SY, Park JH, Schini-Kerth VB. Ginsenoside $Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of $K^+$ channels. Eur J Pharmacol 1999;367:41-49. https://doi.org/10.1016/S0014-2999(98)00898-X
  27. Kang SY, Schini-Kerth VB, Kim ND. Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci 1995;56:1577-1586. https://doi.org/10.1016/0024-3205(95)00124-O
  28. Hien TT, Kim ND, Pokharel YR, Oh SJ, Lee MY, Kang KW. Ginsenoside $Rg_3$ increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase. Toxicol Appl Pharmacol 2010; Epub ahead of print.
  29. Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 2006;580:3211-3216. https://doi.org/10.1016/j.febslet.2006.04.080
  30. Han SW, Kim H. Ginsenosides stimulate endogenous production of nitric oxide in rat kidney. Int J Biochem Cell Biol 1996;28:573-580. https://doi.org/10.1016/1357-2725(95)00163-8
  31. Chai H, Zhou W, Lin P, Lumsden A, Yao Q, Chen C. Ginsenosides block HIV protease inhibitor ritonavir-induced vascular dysfunction of porcine coronary arteries. Am J Physiol Heart Circ Physiol 2005;288:H2965-H2971. https://doi.org/10.1152/ajpheart.01271.2004
  32. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 1981;313:463-480.
  33. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 1962;138:360-375.
  34. McVeigh GE, Hamilton P, Wilson M, Hanratty CG, Leahey WJ, Devine AB, Morgan DG, Dixon LJ, McGrath LT. Platelet nitric oxide and superoxide release during the development of nitrate tolerance: effect of supplemental ascorbate. Circulation 2002;106:208-213. https://doi.org/10.1161/01.CIR.0000021600.84149.78
  35. Tallarida RJ, Murray RB. Manual of pharmacologic calculations with computer programs. 2nd ed. New York: Speringer-Verlag, 1987.
  36. Tachikawa E, Kudo K, Hasegawa H, Kashimoto T, Sasaki K, Miyazaki M, Taira H, Lindstrom JM. In vitro inhibition of adrenal catecholamine secretion by steroidal metabolites of ginseng saponins. Biochem Pharmacol 2003;66:2213-2221. https://doi.org/10.1016/j.bcp.2003.07.012
  37. Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 1982;31:2991-2998. https://doi.org/10.1016/0024-3205(82)90066-2
  38. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature 1984;309:69-71. https://doi.org/10.1038/309069a0
  39. Lim DY, Kim CD, Ahn GW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 1992;15:115-125. https://doi.org/10.1007/BF02974085
  40. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 1989;38:3995-4003. https://doi.org/10.1016/0006-2952(89)90679-5
  41. Seidler NW, Jona I, Vegh M, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasmic reticulum. J Biol Chem 1989;264:17816-17823.
  42. Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay K 8644, a presumed calcium channel activator, in the dog. Naunyn Schmiedebergs Arch Pharmacol 1985;328:382-387. https://doi.org/10.1007/BF00692905
  43. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  44. Chen X, Gillis CN, Moalli R. Vascular effects of ginsenosides in vitro. Br J Pharmacol 1984;82:485-491. https://doi.org/10.1111/j.1476-5381.1984.tb10784.x
  45. Toda N, Ayajiki K, Fujioka H, Okamura T. Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries. J Ethnopharmacol 2001;76:109-113. https://doi.org/10.1016/S0378-8741(01)00217-3
  46. Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 1997;28:191-200. https://doi.org/10.1016/S0168-0102(97)00041-2
  47. Kim DH, Jung JS, Suh HW, Huh SO, Min SK, Son BK, Park JH, Kim ND, Kim YH, Song DK. Inhibition of stress-induced plasma corticosterone levels by ginsenosides in mice: involvement of nitric oxide. Neuroreport 1998;9:2261-2264. https://doi.org/10.1097/00001756-199807130-00021
  48. Chen X, Lee TJ. Ginsenosides-induced nitric oxide-mediated relaxation of the rabbit corpus cavernosum. Br J Pharmacol 1995;115:15-18. https://doi.org/10.1111/j.1476-5381.1995.tb16313.x
  49. Toda N, Tanaka T, Ayajiki K, Okamura T. Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys. Neuroscience 2000;96:393-398. https://doi.org/10.1016/S0306-4522(99)00557-6
  50. Ayajiki K, Hayashida H, Okamura T, Toda N. Pelvic nerve stimulation-induced pressor responses in corpus cavernosum of anesthetized dogs. Am J Physiol 1997;273(5 Pt 2):H2141-H2145.
  51. Toda N, Okamura T. Regulation by nitroxidergic nerve of arterial tone. News Physiol Sci 1992;7:148-152.
  52. Toda N, Okamura T. Nitroxidergic nerve: regulation of vascular tone and blood flow in the brain. J Hypertens 1996;14:423-434.
  53. Burnett AL, Lowenstein CJ, Bredt DS, Chang TS, Snyder SH. Nitric oxide: a physiologic mediator of penile erection. Science 1992;257:401-403. https://doi.org/10.1126/science.1378650
  54. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664-666. https://doi.org/10.1038/333664a0
  55. Sakuma I, Stuehr DJ, Gross SS, Nathan C, Levi R. Identification of arginine as a precursor of endothelium-derived relaxing factor. Proc Natl Acad Sci U S A 1988;85:8664-8667. https://doi.org/10.1073/pnas.85.22.8664
  56. Marley PD, McLeod J, Anderson C, Thomson KA. Nerves containing nitric oxide synthase and their possible function in the control of catecholamine secretion in the bovine adrenal medulla. J Auton Nerv Syst 1995;54:184-194. https://doi.org/10.1016/0165-1838(95)00013-N
  57. Oset-Gasque MJ, Parramon M, Hortelano S, Bosca L, Gonzalez MP. Nitric oxide implication in the control of neurosecretion by chromaffin cells. J Neurochem 1994;63:1693-1700.
  58. Palacios M, Knowles RG, Palmer RM, Moncada S. Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem Biophys Res Commun 1989;165:802-809. https://doi.org/10.1016/S0006-291X(89)80037-3
  59. Schwarz PM, Rodriguez-Pascual F, Koesling D, Torres M, Forstermann U. Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells. Neuroscience 1998;82:255-265.
  60. Torres M, Ceballos G, Rubio R. Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells. J Neurochem 1994;63:988-996.
  61. Rodriguez-Pascual F, Miras-Portugal MT, Torres M. Effect of cyclic GMP-increasing agents nitric oxide and C-type natriuretic peptide on bovine chromaffin cell function: inhibitory role mediated by cyclic GMP-dependent protein kinase. Mol Pharmacol 1996;49:1058-1070.
  62. Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S. The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. J Med Invest 2007;54:381-384. https://doi.org/10.2152/jmi.54.381
  63. Toda N, Ayajiki K, Okamura T. Inhibition of nitroxidergic nerve function by neurogenic acetylcholine in monkey cerebral arteries. J Physiol 1997;498(Pt 2):453-461.
  64. Uchiyama Y, Morita K, Kitayama S, Suemitsu T, Minami N, Miyasako T, Dohi T. Possible involvement of nitric oxide in acetylcholine-induced increase of intracellular $Ca^{2+}$ concentration and catecholamine release in bovine adrenal chromaffin cells. Jpn J Pharmacol 1994;65:73-77. https://doi.org/10.1254/jjp.65.73
  65. O'Sullivan AJ, Burgoyne RD. Cyclic GMP regulates nicotine-induced secretion from cultured bovine adrenal chromaffin cells: effects of 8-bromo-cyclic GMP, atrial natriuretic peptide, and nitroprusside (nitric oxide). J Neurochem 1990;54:1805-1808. https://doi.org/10.1111/j.1471-4159.1990.tb01238.x
  66. Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traystman RJ. Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. Eur J Pharmacol 1992;210:105-106. https://doi.org/10.1016/0014-2999(92)90659-R
  67. Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traystman RJ. Nitric oxide as a regulator of adrenal blood flow. Am J Physiol 1993;264(2 Pt 2):H464-H469.
  68. Viveros OH. Mechanism of secretion of catecholaminies from adrenal medulla. In: Greep RO. Handbook of physiology endocrinology. Washington DC: American Physiological Society, 1975. p.389-426.
  69. Dixon WR, Garcia AG, Kirpekar SM. Release of catecholamines and dopamine beta-hydroxylase from the perfused adrenal gland of the cat. J Physiol 1975;244:805-824.
  70. Viveros OH, Arqueros L, Kirshner N. Release of catecholamines and dopamine beta-hydroxylase from the adrenal medulla. Life Sci 1968;7:609-618. https://doi.org/10.1016/0024-3205(68)90186-0
  71. Douglas WW. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 1968;34:451-474. https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
  72. Sorimachi M, Yoshida K. Exocytotic release of catecholamines and dopamine-beta-hydroxylase from the perfused adrenal gland of the rabbit and cat. Br J Pharmacol 1979;65:117-125. https://doi.org/10.1111/j.1476-5381.1979.tb17340.x
  73. Nakazato Y, Ohga A, Oleshansky M, Tomita U, Yamada Y. Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol 1988;93:101-109. https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
  74. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 1991;27:53-67.
  75. Rang HP, Colquhoun D, Rang HP. The action of ganglionic blocking drugs on the synaptic responses of rat submandibular ganglion cells. Br J Pharmacol 1982;75:151-168. https://doi.org/10.1111/j.1476-5381.1982.tb08768.x
  76. Weaver WR, Wolf KM, Chiappinelli VA. Functional heterogeneity of nicotinic receptors in the avian lateral spiriform nucleus detected with trimethaphan. Mol Pharmacol 1994;46:993-1001.
  77. Wada A, Yanagihara N, Izumi F, Sakurai S, Kobayashi H. Trifluoperazine inhibits $^{45}Ca^{2+}$ uptake and catecholamine secretion and synthesis in adrenal medullary cells. J Neurochem 1983;40:481-486. https://doi.org/10.1111/j.1471-4159.1983.tb11308.x
  78. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 1983;303:535-537. https://doi.org/10.1038/303535a0
  79. Fisher SK, Holz RW, Agranoff BW. Muscarinic receptors in chromaffin cell cultures mediate enhanced phospholipid labeling but not catecholamine secretion. J Neurochem 1981;37:491-497. https://doi.org/10.1111/j.1471-4159.1981.tb00482.x
  80. Yanagihara N, Isosaki M, Ohuchi T, Oka M. Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett 1979;105:296-298. https://doi.org/10.1016/0014-5793(79)80633-X
  81. Wakade AR, Wakade TD. Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 1983;10:973-978. https://doi.org/10.1016/0306-4522(83)90235-X
  82. Kilpatrick DL, Slepetis R, Kirshner N. Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J Neurochem 1981;36:1245-1255. https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  83. Kilpatrick DL, Slepetis RJ, Corcoran JJ, Kirshner N. Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J Neurochem 1982;38:427-435. https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
  84. Knight DE, Kesteven NT. Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond B Biol Sci 1983;218:177-199. https://doi.org/10.1098/rspb.1983.0033
  85. Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N. Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 1985;15:283-292. https://doi.org/10.1016/0306-4522(85)90135-6
  86. Kidokoro Y, Ritchie AK. Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol 1980;307:199-216.
  87. Burgoyne RD. Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta 1984;779:201-216. https://doi.org/10.1016/0304-4157(84)90009-1
  88. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In: Usdin E, Kopin IJ, Barchas J, eds. Catecholamines: basic and clinical frontiers. Oxford: Pergamon Press, 1979. p.70-72.
  89. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca(2+)-pump, reduces Ca(2+)-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 1992;107:134-140. https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  90. Iino M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 1989;94:363-383. https://doi.org/10.1085/jgp.94.2.363
  91. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel Ca(2+)-ATPase inhibitor, on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 1992;106:208-214. https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  92. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells. Distinct nicotinic and muscarinic patterns. FEBS Lett 1989;247:429-434. https://doi.org/10.1016/0014-5793(89)81385-7
  93. Challis RA, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5- tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 1991;56:1083-1086. https://doi.org/10.1111/j.1471-4159.1991.tb02033.x

Cited by

  1. Gintonin facilitates catecholamine secretion from the perfused adrenal medulla vol.20, pp.6, 2016, https://doi.org/10.4196/kjpp.2016.20.6.629
  2. Anti-hypertensive Herbs and their Mechanisms of Action: Part I vol.6, pp.1663-9812, 2015, https://doi.org/10.3389/fphar.2015.00323
  3. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action vol.7, pp.1663-9812, 2016, https://doi.org/10.3389/fphar.2016.00469
  4. Effect of Korean Red Ginseng in individuals exposed to high stress levels: a 6-week, double-blind, randomized, placebo-controlled trial vol.43, pp.3, 2011, https://doi.org/10.1016/j.jgr.2018.03.001
  5. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety vol.11, pp.None, 2011, https://doi.org/10.3389/fphar.2020.00422