DOI QR코드

DOI QR Code

Effect of EGCG on Expression of Neurogenin 3 via the MAP Kinase Signaling Pathway in AR42J Cells, a Rat Pancreatic Tumor Cell Line

녹차 카테킨, Epigallocathechin Gallate (EGCG)의 흰쥐췌장종양 선 세포 AR42J의 MAP Kinase 세포 신호전달 기전을 통한 Neurogenin 3 발현에 미치는 영향

  • Kim, Sung-Ok (Department of surgery and the Sealy Center for Cancer Cell biology, University of Texas Medical Branch) ;
  • Choe, Won-Kyung (Department of Food Nutrition, Gimcheon University)
  • 김성옥 (텍사스의과대학교 실리 암센터) ;
  • 최원경 (김천대학교 식품영양학과)
  • Received : 2011.03.16
  • Accepted : 2011.05.29
  • Published : 2011.06.30

Abstract

Epigallocatechin gallate (EGCG), or epigallocatechin 3-gallate, is the ester of epigallocatechin and gallic acid, and is a type of catechin. EGCG may be therapeutic for many disorders including diabetics and some types of cancer. However it is unknown whether EGCG can induce transdifferentiation of pancreatic cells in pancreatitis. The aim of this study was to investigate the effects of EGCG on the expression of pancreatic regenerating related markers in pancreatic AR42J cells, a model of pancreatic progenitor cells. AR42J cells, differentiated with betacellulin and activin A, were cultured with/without EGCG in a time-dependent manner. Cell growth rate, levels of mRNA, and protein expression were examined with the MTT assay, quantitative PCR, and Western blots, respectively. The results showed that AR42J cell growth rates were inhibited by EGCG in a dose-dependent manner. mRNA and protein expression of amylase, insulin and neurogenin 3 (ngn 3) increased in AR42J cells treated with EGCG. Additionally, we demonstrated that the signal transduction pathway of mitogen-activated protein (MAP) kinase is active in EGCG-treated AR42J cells. ERK and JNK phosphorylation decreased in cells treated with EGCG but not p38 phosphorylation. Activation of the p38 MAP kinase pathway was confirmed by specific MAP kinase pathways inhibitors: U0126 for ERK, SP600126 for JNK, and SB203580 for p38. Activated p38 phosphorylation was inhibited by the specific p38 inhibitor SB203580 but p38 phosphorylation was inhibited with increased EGCG treatment. The ERK and JNK MAP kinase pathways were not affected by EGCG treatment. Although further studies are needed, these results suggest that EGCG affects the induction of pancreatic cell regeneration by increasing the ngn 3 protein and mRNA expression and activating the p38 MAP kinase pathway.

본 연구는 EGCG의 항 당뇨 활성기전으로 췌장종양 선세포 AR42J의 분화 및 내분비기능 개선에 미치는 영향과 그 세포 신호전달 기전을 확인하였다. 그 결과 첫째, AR42J 세포에 EGCG 처리 시 췌장종양 선세포의 세포증식이 농도 의존적으로 감소되었다. 둘째, 세포사멸 유도가 유의적으로 일어나지 않는 농도인 1uM EGCG를 AR42J 세포에 처리한 결과 ngn 3, ${\alpha}$-amylase, insulin은 EGCG처리 24시간에 mRNA, 단백질 발현증가를 나타내었고 48시간에 유의적 증가를 나타내었다. 셋째, EGCG 처리 시 ERK, JNK MAP Kinase 기전은 인산화 억제를 나타내었고 반면에 p38 기전의 인산화는 48시간에 유의적 증가를 하였다. 넷째, p38기전 저해제인 SB203580을 처리하여 EGCG가 MAP Kinase 기전중의 하나인 p38 기전 인산화 활성의 회복을 나타내어 ngn 3 발현을 위한 전사 신호전달 기전임을 다시 확인하였다. 따라서 녹차 생리활성 성분인 EGCG의 췌장종양 선 세포 AR42J 처리 결과 EGCG는 p38 MAP Kinase 기전 활성을 통해 췌장 선세포의 분화지표인 ngn 3 발현을 증가시키며 췌장내분비 기능 지표인 ${\alpha}$-amylase, insulin 발현증가를 나타내어 세포의 내분비기능 개선에도 영향을 미치는 것으로 사료된다.

Keywords

References

  1. Suzuki K, Kori S, Morikawa M, Takagi A, Namiki H. Oxidative stress-mediated bimodal regulation of polymorphonuclear leukocyte spreading by polyphenolic compounds. Int Immunopharmacol 2010; 10(11): 1448-1455 https://doi.org/10.1016/j.intimp.2010.08.020
  2. Kurbitz C, Heise D, Redmer T, Goumas F, Arlt A, Lemke J, Rimbach G, Kalthoff H, Trauzold A. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Sci 2011; 102(4): 728-734 https://doi.org/10.1111/j.1349-7006.2011.01870.x
  3. Larsen CA, Dashwood RH, Bisson WH. Tea catechins as inhibitors of receptor tyrosine kinases: mechanistic insights and human relevance. Pharmacol Res 2010; 62(6): 457-464 https://doi.org/10.1016/j.phrs.2010.07.010
  4. Singh R, Akhtar N, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. Life Sci 2010; 86(25-26): 907-918 https://doi.org/10.1016/j.lfs.2010.04.013
  5. Yadav D, Whitcomb DC. The role of alcohol and smoking in pancreatitis. Nat Rev Gastroenterol Hepatol 2010; 7(3): 131-145 https://doi.org/10.1038/nrgastro.2010.6
  6. Yadav D. Recent advances in the epidemiology of alcoholic pancreatitis. Curr Gastroenterol Rep 2011; 13(2): 157-165 https://doi.org/10.1007/s11894-011-0177-9
  7. Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology 2001; 120(3): 682-707 https://doi.org/10.1053/gast.2001.22586
  8. Lankisch PG, Assmus C, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic diseases in Luneburg County. A study in a defined German population. Pancreatology 2002; 2(5): 469-477 https://doi.org/10.1159/000064713
  9. Lankisch PG, Lowenfels AB, Maisonneuve P. What is the risk of alcoholic pancreatitis in heavy drinkers? Pancreas 2002; 25(4): 411-412 https://doi.org/10.1097/00006676-200211000-00015
  10. Yadav D, Eigenbrodt ML, Briggs MJ, Williams DK, Wiseman EJ. Pancreatitis: prevalence and risk factors among male veterans in a detoxification program. Pancreas 2007; 34(4): 390-398 https://doi.org/10.1097/mpa.0b013e318040b332
  11. Choudhuri G, Lakshmi CP, Goel A. Pancreatic diabetes. Trop Gastroenterol 2009; 30(2): 71-75
  12. Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 2007; 18(10): 393-400 https://doi.org/10.1016/j.tem.2007.10.001
  13. Docherty K. Growth and development of the islets of Langerhans: implications for the treatment of diabetes mellitus. Curr Opin Pharmacol 2001; 1(6): 641-650 https://doi.org/10.1016/S1471-4892(01)00109-6
  14. Schwitzgebel VM. Programming of the pancreas. Mol Cell Endocrinol 2001; 185(1-2): 99-108 https://doi.org/10.1016/S0303-7207(01)00628-1
  15. Zhang YQ, Mashima H, Kojima I. Changes in the expression of transcription factors in pancreatic AR42J cells during differentiation into insulin-producing cells. Diabetes 2001; 50(Suppl 1): S10-S14 https://doi.org/10.2337/diabetes.50.2007.S10
  16. Ogihara T, Watada H, Kanno R, Ikeda F, Nomiyama T, Tanaka Y, Nakao A, German MS, Kojima I, Kawamori R. p38 MAPK is involved in activin A- and hepatocyte growth factor-mediated expression of pro-endocrine gene neurogenin 3 in AR42JB13 cells. J Biol Chem 2003; 278(24): 21693-21700 https://doi.org/10.1074/jbc.M302684200
  17. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000; 97(4): 1607-1611 https://doi.org/10.1073/pnas.97.4.1607
  18. Edlund H. Transcribing pancreas. Diabetes 1998; 47(12): 1817-1823 https://doi.org/10.2337/diabetes.47.12.1817
  19. Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech Dev 2003; 120(1): 65-80 https://doi.org/10.1016/S0925-4773(02)00333-7
  20. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000; 127(16): 3533-3542
  21. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H. Notch signalling controls pancreatic cell differentiation. Nature 1999; 400(6747): 877-881 https://doi.org/10.1038/23716
  22. Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G, Madsen OD, Serup P. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 2000; 49(2): 163-176 https://doi.org/10.2337/diabetes.49.2.163
  23. Trevisanato SI, Kim YI. Tea and health. Nutr Rev 2000; 58(1): 1-10
  24. Rice-Evans C. Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 1999; 220(4): 262-266 https://doi.org/10.1046/j.1525-1373.1999.d01-45.x
  25. Kao YH, Hiipakka RA, Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141(3): 980-987 https://doi.org/10.1210/en.141.3.980
  26. Asaumi H, Watanabe S, Taguchi M, Tashiro M, Nagashio Y, Nomiyama Y, Nakamura H, Otsuki M. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits ethanol-induced activation of pancreatic stellate cells. Eur J Clin Invest 2006; 36(2):113-122 https://doi.org/10.1111/j.1365-2362.2006.01599.x
  27. Sakurai N, Mochizuki K, Kameji H, Shimada M, Goda T. (-)-Epigallocatechin gallate enhances the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes at an early stage of differentiation. Nutrition 2009; 25(10): 1047-1056 https://doi.org/10.1016/j.nut.2009.02.012
  28. Bursill CA, Abbey M, Roach PD. A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis 2007; 193(1): 86-93 https://doi.org/10.1016/j.atherosclerosis.2006.08.033
  29. Ryu OH, Lee J, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res Clin Pract 2006; 71(3): 356-358 https://doi.org/10.1016/j.diabres.2005.08.001
  30. Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, Tokimitsu I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 2005; 81(1): 122-129 https://doi.org/10.1093/ajcn/81.1.122
  31. Imai K, Nakachi K. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 1995; 310(6981): 693-696 https://doi.org/10.1136/bmj.310.6981.693
  32. Hamamoto K, Yamada S, Hara A, Kodera T, Seno M, Kojima I. Extracellular matrix modulates insulin production during differentiation of AR42J cells: functional role of Pax6 transcription factor. J Cell Biochem 2011; 112(1): 318-329 https://doi.org/10.1002/jcb.22930
  33. Fukazawa T, Matsuoka J, Naomoto Y, Nakai T, Durbin ML, Kojima I, Lakey JR, Tanaka N. Development of a novel betacell specific promoter system for the identification of insulinproducing cells in in vitro cell cultures. Exp Cell Res 2006; 312(17): 3404-3412 https://doi.org/10.1016/j.yexcr.2006.07.015
  34. Kojima I, Umezawa K. Conophylline: a novel differentiation inducer for pancreatic beta cells. Int J Biochem Cell Biol 2006; 38(5-6): 923-930 https://doi.org/10.1016/j.biocel.2005.09.019
  35. Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 2007; 18(10): 393-400 https://doi.org/10.1016/j.tem.2007.10.001
  36. Docherty K. Growth and development of the islets of Langerhans: implications for the treatment of diabetes mellitus. Curr Opin Pharmacol 2001; 1(6): 641-650 https://doi.org/10.1016/S1471-4892(01)00109-6
  37. Schwitzgebel VM. Programming of the pancreas. Mol Cell Endocrinol 2001; 185(1-2): 99-108 https://doi.org/10.1016/S0303-7207(01)00628-1
  38. Carvalho KM, Morais TC, de Melo TS, de Castro Brito GA, de Andrade GM, Rao VS, Santos FA. The natural flavonoid quercetin ameliorates cerulein-induced acute pancreatitis in mice. Biol Pharm Bull 2010; 33(9): 1534-1539 https://doi.org/10.1248/bpb.33.1534
  39. Thrower EC, Yuan J, Usmani A, Liu Y, Jones C, Minervini SN, Alexandre M, Pandol SJ, Guha S. A novel protein kinase D inhibitor attenuates early events of experimental pancreatitis in isolated rat acini. Am J Physiol Gastrointest Liver Physiol 2011; 300(1): G120-G129 https://doi.org/10.1152/ajpgi.00300.2010
  40. Umezawa K, Hiroki A, Kawakami M, Naka H, Takei I, Ogata T, Kojima I, Koyano T, Kowithayakorn T, Pang HS, Kam TS. Induction of insulin production in rat pancreatic acinar carcinoma cells by conophylline. Biomed Pharmacother 2003; 57(8): 341-350 https://doi.org/10.1016/S0753-3322(03)00096-9
  41. Chen LA, Li J, Silva SR, Jackson LN, Zhou Y, Watanabe H, Ives KL, Hellmich MR, Evers BM. PKD3 is the predominant protein kinase D isoform in mouse exocrine pancreas and promotes hormone-induced amylase secretion. J Biol Chem 2009; 284(4): 2459-2471 https://doi.org/10.1074/jbc.M801697200
  42. Takabayashi F, Harada N. Effects of green tea catechins (Polyphenon 100) on cerulein-induced acute pancreatitis in rats. Pancreas 1997; 14(3): 276-279
  43. Kao YH, Chang HH, Lee MJ, Chen CL. Tea, obesity, and diabetes. Mol Nutr Food Res 2006; 50(2): 188-210 https://doi.org/10.1002/mnfr.200500109

Cited by

  1. [6]-Gingerol Attenuates Autophagy and Increases Activities of Antioxidative Defense Enzymes in Mice with Cerulein-induced Acute Pancreatitis vol.23, pp.10, 2013, https://doi.org/10.5352/JLS.2013.23.10.1280
  2. Effects of (-)-Epigallocatechin-3-gallate on the Release of Pancreatic Enzymes and Expression of Regenerating Genes in Ethanol-injured Murine Pancreatic Primary Acinar Cells vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1404
  3. Pharmacological Intervention through Dietary Nutraceuticals in Gastrointestinal Neoplasia vol.56, pp.9, 2016, https://doi.org/10.1080/10408398.2013.772091