DOI QR코드

DOI QR Code

Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea

자기회귀오차모형을 이용한 평택시 PM10 농도 분석

  • Lee, Hoon-Ja (Department of Information Statistics, Pyeongtaek University)
  • 이훈자 (평택대학교 디지털응용정보학과)
  • Received : 2010.09.06
  • Accepted : 2011.05.30
  • Published : 2011.06.30

Abstract

The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.

Keywords

References

  1. 조신섭, 이정형(1997) SAS/ETS를 이용한 경제시계열 분석, 자유아카데미.
  2. Brunelli, U., V. Piazza, L. Pignato, F. Sorbello, and S. Vitabile (2007) Two-days ahead prediction of daily maximum concentrations of $SO_2,\;O_3,\;PM10,\;NO_2,\;CO$ in the Urban area of Palermo, Italy, Atmospheric Environment, 41, 2967-2995. https://doi.org/10.1016/j.atmosenv.2006.12.013
  3. Chung, Y.S. and J.S. Chung (1991) On surface ozone observed in the Seoul metropolitan area during 1989 and 1990, J. KAPRA, 7(3), 169-179.
  4. Cobourn, W.G. (2010) An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations, Atmospheric Environment, 44, 3015-3023. https://doi.org/10.1016/j.atmosenv.2010.05.009
  5. Hubbard, M. and W. Cobourn (1998) Development of a regression model to forecast ground-level ozone concentration in Louisville, KY, Atmospheric Environment, 32, 2637-2647. https://doi.org/10.1016/S1352-2310(97)00444-5
  6. Kim, S.C. and S.Y. Joh (2005) Derivation of new box model to analyze the air pollution trends in a metropolitian area, J. Korean Soc. Atmos. Environ., 21(3), 377-397.
  7. Kim, Y.P. (2006) Air pollution in Seoul caused by aerosols, J. Korean Soc. Atmos. Environ., 22(5), 535-553.
  8. Koo, Y.S., H.Y. Yun, H.Y. Kwon, and S.H. Yu (2010) A development of PM10 forecasting system, J. Korean Soc. Atmos. Environ., 26(6), 666-682. https://doi.org/10.5572/KOSAE.2010.26.6.666
  9. Lee, J.Y., B.J. Kong, J.S. Han and M.D. Lee (2008) Long term analysis of PM10 concentration in Seoul using KZ filter, J. Korean Soc. Atmos. Environ., 24, 63-71. https://doi.org/10.5572/KOSAE.2008.24.1.063
  10. Lee, Y.S., H.G. Kim, J.S. Park, and H.K. Kim (2006) A study on statistical forecasting models of PM10 in Pohang region by the variable transformation, J. Korean Soc. Atmos. Environ., 22(5), 614-626.
  11. Perez, P. and J. Reyes (2006) An integrated neural network model for PM10 forecasting, Atmospheric Environment, 40, 2845-2851. https://doi.org/10.1016/j.atmosenv.2006.01.010
  12. Wise, E.K. and A.C. Comrie (2005): Meteorologically adjusted urban air qualty trends in the Southwestern United States, Atmospheric Environment, 39, 2969-2980. https://doi.org/10.1016/j.atmosenv.2005.01.024