DOI QR코드

DOI QR Code

Mutagenic and Antimutagenic Effects of Hemp Seed Oil Evaluated by Ames Salmonella Testing

삼종실유의 항돌연변이 효과

  • Jeun, Jung-Ae (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Cho, Hee-Joon (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Jun, Hee-Jin (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Ji-Hae (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Jia, Yao-Yao (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Cho, Kyoung-Sang (Department of Biological Science, Konkuk University) ;
  • Kim, Eun-Soo (Department of Biological Science, Konkuk University) ;
  • Lee, Sung-Joon (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2011.02.24
  • Accepted : 2011.03.06
  • Published : 2011.06.30

Abstract

We examined the in vitro mutagenic and antimutagenic effects of hexane-extracted hemp (Cannabis sativa L. subsp. sativa var. sativa) seed oil (HO) with and without S9-mediated metabolic activation, using the TA98 and TA100 Salmonella Typhimurium strains. The MTT assay revealed no cytotoxicity in HepG2 cells for HO quantities $\leq400g$/mL. In the mutagenicity test, revertant colonies did not exceed spontaneous colonies in number. Colony numbers did not increase in either strain after HO treatment, with or without metabolic activation. HO showed no mutagenic effects and did not induce a mutation in either strain. In the antimutagenicity test, HO reduced the number of mutated colonies induced by 4NQO in both strains. The inhibition rates of HO (TA98, 21-91%; TA100, 21-85%) indicated a potent reduction in mutagenicity induced by 4NQO. HO showed no significant mutagenicity and may have antimutagenic effects, as assessed by Ames testing.

Keywords

References

  1. Oomah BD, Busson M, Godgrey DV, Drover JCG. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chem. 76: 33-43 (2002) https://doi.org/10.1016/S0308-8146(01)00245-X
  2. Wang XS, Tang CH, Yang XQ, Gao WR. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 107: 11-18 (2008) https://doi.org/10.1016/j.foodchem.2007.06.064
  3. Saclik K, Ozturk R, Keskin R. Some physical properties of hemp seed. Biosystems Eng. 86: 191-198 (2003) https://doi.org/10.1016/S1537-5110(03)00130-2
  4. Tang CH, Wang XS, Yang XQ. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chem. 114: 1484-1490 (2009) https://doi.org/10.1016/j.foodchem.2008.11.049
  5. Arni P, Luth A, Deparade E, Muller D. Studies of the metabolizing effect of the S9 liver fraction, hepatic microsomes and microsomal supernatant in the Ames test. Mutat. Res. 74: 154- 154 (1980)
  6. Peak MJ, Dornfeld SS, Venters D. Liver-microsome S9 enzyme increases spontaneous background mutation frequency in the Ames Salmonella test system in the absence of any added mutagen. Mutat. Res. Lett. 103: 263-265 (1982) https://doi.org/10.1016/0165-7992(82)90052-5
  7. Rivrud GN. Mutagenicity testing of seminal fluid: Seminal fluid increases the mutagenicity of the precursor mutagen benzo[a]pyrene in the presence of S9 mix. Mutat. Res. Lett. 208: 195-200 (1988) https://doi.org/10.1016/0165-7992(88)90060-7
  8. Roldan-Arjona T, Ruiz-Rubio M, Pueyo C. Influence of S9 mix on the expression of mutants in the l-arabinose resistance test of Salmonella Typhimurium. Mutat. Res. Lett. 243: 303-308 (1990) https://doi.org/10.1016/0165-7992(90)90147-C
  9. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173-215 (1983) https://doi.org/10.1016/0165-1161(83)90010-9
  10. Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 455: 29-60 (2000) https://doi.org/10.1016/S0027-5107(00)00064-6
  11. Connor TH, Sadagopa-Ramanunjam VM, Rinkus SJ, Legator S, Norman M, Trieff M. The evaluation of mutagenicities of 19 structurally related aromatic amines and acetamides in Salmonella Typhimurium TA98 and TA100. Mutat. Res. 118: 49-59 (1983) https://doi.org/10.1016/0165-1218(83)90115-5
  12. Dionigi CP, Lawlor TE, McFarland JE, Johnsen PB. Evaluation of geosmin and 2-methylisoborneol on the histidine dependence of TA98 and TA100 Salmonella Typhimurium tester strains. Water Res. 27: 1615-1618 (1993) https://doi.org/10.1016/0043-1354(93)90125-2
  13. Haack T, Erdinger L, Boche G. Mutagenicity in Salmonella Typhimurium TA98 and TA100 of nitroso and respective hydroxylamine compounds. Mutat. Res. 491: 183-193 (2001) https://doi.org/10.1016/S1383-5718(01)00140-1
  14. Ipek E, Zeytinoglu H, Okay S, Tuylu BA, Kurkcouglu M, Baser KHC. Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem. 93: 551-556 (2005) https://doi.org/10.1016/j.foodchem.2004.12.034
  15. Sargent AW, Regnier AP. Fluctuation test data on 4-chloromethyl-biphenyl (4CMB), 4-hydroxymethylbiphenyl (4HMB), and benzyl chloride (BC) using Salmonella Typhimurium TA98 and TA100. Mutat. Res. 100: 87-90 (1982) https://doi.org/10.1016/0165-1218(82)90028-3
  16. Vaughan DJ, Baptista JA, Perdomo GR, Krepinsky JJ. The involvement of dimethyl sulfoxide in a bacteriotoxic response of the Ames assay tester strains TA98 and TA100. Mutat. Res. Lett. 226: 39-42 (1989) https://doi.org/10.1016/0165-7992(89)90090-0
  17. Zhang Z, Che W, Liang Y, Wu M, Li N, She Y, Liu F, Wu D. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts. Toxicol. in Vitro 21: 1058-1065 (2007) https://doi.org/10.1016/j.tiv.2007.04.001
  18. Khatwora E, Adsul VB, Kulkarni MM, Deshpande NR, Kashalkar RV. Spectroscopic determination of total phenol and flavonoid contents of Ipomoea carnea. Int. J. Chem. Tech. Res. 2: 1688-1701 (2010)
  19. Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31: 347-364 (1975) https://doi.org/10.1016/0165-1161(75)90046-1
  20. Verschaeve L, Van Staden J. Mutagenic and antimutagenic properties of extracts from South African traditional medicinal plants. J. Ethnopharmacol. 119: 575-587 (2008) https://doi.org/10.1016/j.jep.2008.06.007
  21. Wang LE, Hsu TC, Xiong P, Strom SS, Duvic M, Clayman GL, Weber RS, Lippman SM, Goldberg LH, Wei Q. 4-Nitroquinoline- 1-oxide-induced mutagen sensitivity and risk of nonmelanoma skin cancer: a case-control analysis. J. Invest. Dermatol. 127: 196-205 (2007) https://doi.org/10.1038/sj.jid.5700481
  22. Tognolini M, Barocelli E, Ballabeni V, Bruni R, Bianchi A, Chivarini M, Impicciatore M. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci. 78: 1419-1432 (2006) https://doi.org/10.1016/j.lfs.2005.07.020
  23. Gardeli C, VassilikiI P, Athanasios M, Kiboutis T, Komaitis M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 107: 1120-1130 (2008) https://doi.org/10.1016/j.foodchem.2007.09.036
  24. Grabmann J, Hippeli S, Spitzenberger R, Elstner EF. The monoterpene terpinolene from the oil of Pinus mugo L. in concert with -tocopherol and -carotene effectively prevents oxidation of LDL. Phytomedicine 12: 416-423 (2005) https://doi.org/10.1016/j.phymed.2003.10.005
  25. Ng TB, Liu F, Lu Y, Cheng CHK, Wang Z. Antioxidant activity of compounds from the medicinal herb Aster tataricus. Comp. Biochem. Phys. C 136: 109-115 (2003)
  26. Singh HP, Mittal S, Kaur S, Batish DR, Kohli RK. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 114: 642-645 (2009) https://doi.org/10.1016/j.foodchem.2008.09.101
  27. Tepe B, Sihoglu-Tepe A, Daferera D, Polissiou M, Sokmen A. Chemical composition and antioxidant activity of the essential oil of Clinopodium vulgare L. Food Chem. 103: 766-770 (2007) https://doi.org/10.1016/j.foodchem.2006.09.019
  28. Fragoso V, Nascimento NACD, Moura DJ, Silva ACRE, Richter MFI, Saffi J, Fett-Neto AG. Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell. Toxicol. in Vitro 22: 559-566 (2008) https://doi.org/10.1016/j.tiv.2007.11.010
  29. Marin-Martinez R, Veloz-Garc R, Veloz-Rodriguez R, Guzman- Maldonado SH, Loarca-Pina G, Cardador-Martinez A, Guevara- Olvera L, Miranda-Lopez R, Torres-Pacheco I, Perez CPE, Herrera- Hernandez G, Villasenor-Ortega F, Gonzalex-Chavira M, Guevara-Gonzalez RG. Antimutagenic and antioxidant activities of quebracho phenolics (Schinopsis balansae) recovered from tannery wastewaters. Bioresource Technol. 100: 434-439 (2009) https://doi.org/10.1016/j.biortech.2008.05.029
  30. Rocha-Guzm NE, Herzog A, Gonzalez-Laredo RF, Ibarra-Perez FJ, Zambra-Galv G, Gallegos-Infante JA. Antioxidant and antimutagenic activity of phenolic compounds in 3 different colour groups of common bean cultivars (Phaseolus vulgaris). Food Chem. 103: 521-527 (2007) https://doi.org/10.1016/j.foodchem.2006.08.021
  31. Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow, and red onions. Food. Chem. Toxicol. 42: 659-666 (2004) https://doi.org/10.1016/j.fct.2003.12.002

Cited by

  1. In vitro Antimutagenic and Genotoxic Effects of Sophora Radix Extracts vol.17, pp.4, 2013, https://doi.org/10.7585/kjps.2013.17.4.335
  2. In vitro Antimutagenic and Genotoxic Effects of Azadirachta indica Extract vol.57, pp.3, 2014, https://doi.org/10.3839/jabc.2014.035
  3. Hempseed oil induces reactive oxygen species- and C/EBP homologous protein-mediated apoptosis in MH7A human rheumatoid arthritis fibroblast-like synovial cells vol.154, pp.3, 2014, https://doi.org/10.1016/j.jep.2014.04.052