DOI QR코드

DOI QR Code

Transdermal Delivery System of Effective Ingredients for Cosmeceuticals

기능성화장품을 위한 유효성분의 경피 전달 시스템

  • Cho, Wan-Goo (College of Alternative Medicine, Jeonju University)
  • 조완구 (전주대학교 대체의학대학 기초의과학과)
  • Received : 2011.05.23
  • Accepted : 2011.05.31
  • Published : 2011.06.30

Abstract

World consumers are now focusing on their health, well-being and appearance more than ever before. This trend is creating heightened demand for products formulated as cosmeceuticals with active ingredients. A significant number of innovative formulations are now being used in cosmetics with real consumer-perceivable benefits and optimized sensory attributes, resulting in an economic uplift of cosmetic industry. To obtain skin care formulations with real consumer-perceivable benefits through dermal delivery of active ingredients, formulators are resorting to technology that until recently was used in pharmaceutical products. These various delivery systems are now being used in cosmecuetical formulations. Novel delivery systems reviewed here possess enormous potential as next-generation smarter carrier systems.

전 세계의 소비자들은 예전에 비해 외모, 건강 및 안락한 삶에 관심을 집중시키고 있다. 이와 같은 경향은 유효성분을 함유한 기능성화장품의 요구 또한 증대시키고 있다. 차별화된 제형을 이용한 감각적인 사용감이 구현된 처방은 실질적인 소비자 인지 수준의 화장품에 이용되고 있으며 그 결과로 화장품시장이 확대되고 있다. 이와 더불어 유효성분의 경피 전달을 통한 소비자 인지 수준의 제품을 개발하기 위해서 화장품 과학자는 첨단 의약품의 다양한 기술을 접목해야 한다. 다양한 경피 흡수 수단의 기술이 기능성 화장품에 사용되고 있다. 본 총설에서는 차세대 경피 전달 시스템으로서 큰 잠재력을 가진 경피 전달 시스템에 대해서 논하고자 한다.

Keywords

References

  1. G. Cevc and U. Vierl, Nanotechnology and transdermal route: a state of the art review and critical appraisal, J. Control. Release, 141, 277 (2010). https://doi.org/10.1016/j.jconrel.2009.10.016
  2. C. H. Purdon, C. G. Azzi, J. Zhang, E. W. Smith, and H. I. Maibach, Penetration enhancement of transdermal delivery-current permutations and limitations, Crit. Rev. Ther. Drug Carrier. Syst., 21, 97 (2004). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i2.20
  3. P. Karande, A. Jain, and S. Mitragotri, Discovery of transdermal penetration enhancers by high-throughput screening, Nat. Biotechnol., 22, 192 (2004). https://doi.org/10.1038/nbt928
  4. J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. H. Lee, Y. C. Yoo, W. G. Cho, S. Y. Choi, and S. H. Kang, Penetration enhancement in mouse skin and lipolysis in adipocytes by TATGKH, a mew cosmetic ingredient, J. Comet. Sci., 54, 483 (2003).
  5. J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. S. Kang, and W. G. Cho, The penetration enhancement and lipolytic effects of TATGKH, both in vitro, ex-vivo, and in-vivo, IFSCC Magazine, 7(2), 103 (2004).
  6. N. G. Kang, J. M. Lim, M. Y. Chang, S. G. Park, W. G. Cho, and Y. S. Choi, Modified superoxide dismutase for cosmeceuticals, IFSCC Magazine, 8(2), 87 (2005).
  7. Y. A. Shchipunov and E. V. Shumilina, Lecithin organogels: role of polar solvent and nature of intermolecular interactions, Colloid J., 58, 117 (1996).
  8. P. Schurtenberger, R. Scartazzini, L. J. Magid, M. E. Leser, and P. L. Luisi, Structural and dynamic properties of polymer-like reverse micelles, J. Phys. Chem., 94, 3695 (1990). https://doi.org/10.1021/j100372a062
  9. D. Grace, J. Rogers, K. Skeith, and K. Anderson, Topical diclofenac versus placebo: a double blind, randomized clinical trial in patients with osteoarthritis of the knee, J. Rheumatol., 26, 2659 (1999).
  10. F. Dreher, P. Walde, P. Walter, and E. Wehrli, Interaction of a lecithin microemulasion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131 (1997). https://doi.org/10.1016/S0168-3659(96)01559-3
  11. L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, and S. Y. Chan, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 106, 88 (2005). https://doi.org/10.1016/j.jconrel.2005.04.017
  12. P. F. Lim, X. Y. Liu, L. Kang, P. C. Ho, Y. W. Chan, and S. Y. Chan, Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol, Int. J. Pharm., 311, 157 (2006). https://doi.org/10.1016/j.ijpharm.2005.12.042
  13. S. Pisal, V. Shelke, K. Mahadik, and S. Kadam, Effect of organogel components on in vitro nasal delivery of propranolol hydrochloride, AAPS Pharm. Sci. Tech., 5, e63 (2004). https://doi.org/10.1208/pt050459
  14. R. Kumar and O. P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review, AAPS Pharm. Sci. Tech.. 6, e298 (2005). https://doi.org/10.1208/pt060240
  15. R. Scartazzini and P. L. Luisi, Organogels from lecithins, J. Phys. Chem., 92, 829 (1988). https://doi.org/10.1021/j100314a047
  16. Y. A. Shchipunov and E. V. Shumilina, Lecithin bridging by hydrogen bonds in the organogel, Mater. Sci. Eng., C, Biomim. Supramol. Syst., 3(1), 43 (1995). https://doi.org/10.1016/0928-4931(95)00102-6
  17. H. Willimann and P. L. Luisi, Lecithin organogels as matrix for transdermal transport of drugs, Biochem. Biophys. Res. Commun., 177, 897 (1991). https://doi.org/10.1016/0006-291X(91)90622-E
  18. H. Willimann, P. Walde, P. L. Luisi, A. Gazzaniga, and F. Stroppolo, Lecithin organogels as matrix for transdermal transport of drugs, J. Pharm. Sci., 81, 871 (1992). https://doi.org/10.1002/jps.2600810906
  19. S. Bhatnagar and S. P. Vyas, Organogel-based systems for transdermal delivery of propranolol, J. Microencapsul., 2, 431 (1994).
  20. C. Nastruzzi and R. Gambari, Antitumor activity of (trans)dermally delivered aromatic tetra-amidines, J. Control Release, 29, 53 (1994). https://doi.org/10.1016/0168-3659(94)90121-X
  21. F. Dreher, P. Walde, P. Walther, and E. Wehrli, Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 45, 131 (1997). https://doi.org/10.1016/S0168-3659(96)01559-3
  22. U. S. Patent 6,306,383 (2001).
  23. U. S. Patent 28,789 (2002).
  24. R. Z. Aboofazeli, H. Zia, and T. E. Needham, Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement, Drug Deliv., 9, 239 (2002). https://doi.org/10.1080/10717540260397855
  25. S. B. Hoffman, A. R. Yoder, and L. A. Trepanier, Bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats, J. Vet. Pharmacol. Ther., 25, 189 (2002). https://doi.org/10.1046/j.1365-2885.2002.00405.x
  26. A. Arellano, S. Santoyo, C. Martin, and P. Ygartua, Influence of propylene glycol and isopropyl myristate on in vitro percutaneous penetration of diclofenac sodium from carbopol gel, Eur. J. Pharm. Sci., 7, 129 (1999). https://doi.org/10.1016/S0928-0987(98)00010-4
  27. U. S. Patent 6,632,843 (2003).
  28. S. Murdan, G. Gregoriadis, and A. T. Florence, Non-ionic surfactant based organogels incorporating niosomes, S.T.P. Pharm. Sci., 6, 44 (1996).
  29. N. Jibry and S. Murdan, In vivo investigation, in mice and man, into the irritation potential of novel amphiphilogels being studied as transdermal drug carriers, Eur. J. Pharm. Biopharm., 58, 107 (2004). https://doi.org/10.1016/j.ejpb.2004.02.013
  30. R. C. Robinson, Plastibase, a hydrocarbon gel ointment base, Bull. Sch. Med. Univ. Md., 40, 86 (1955).
  31. S. Goto, M. Kawata, T. Suzuki, N. S. Kim, and C. Ito, Preparation and evaluation of eudragit gels. I: eudragit organogels containing drugs as rectal sustainedrelease preparations, J. Pharm. Sci., 80, 958 (1991). https://doi.org/10.1002/jps.2600801011
  32. M. C. Jones, P. Tewari, C. Blei, K. Hales, D. J. Pochan, and J. C. Leroux, Self-assembled nanocages for hydrophilic guest molecules, J. Am. Chem. Soc., 128, 14599 (2006). https://doi.org/10.1021/ja065462c
  33. T. Penzes, I. Csoka, and I. Eros, Rheological analysis of the structural properties effecting the percutanneous absorption and stability in pharmaceutical organogels, Rheol. Acta, 43, 457 (2004). https://doi.org/10.1007/s00397-004-0396-1
  34. L. Kang, X. Y. Liu, P. D. Sawant, P. C. Ho, Y. W. Chan, and S. Y. Chan, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 106, 88 (2005). https://doi.org/10.1016/j.jconrel.2005.04.017
  35. B. Mishra, B. B. Patel, and S. Tiwari, Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery, Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 9 (2010). https://doi.org/10.1016/j.nano.2009.04.008
  36. E. Reverchon, G. D. Porta, and R. Taddeo, Solubility and micronization of griseofulvin in supercritical CHF3, Ind. Eng. Chem. Res., 34, 4087 (1995). https://doi.org/10.1021/ie00038a051
  37. R. H. Mueller, K. Maeder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art, Eur. J. Pharm. Biopharm., 50, 161 (2000). https://doi.org/10.1016/S0939-6411(00)00087-4
  38. B. Jiang, L. Hu, C. Gao, and J. Shen, Ibuprofenloaded nanoparticles prepared by a co-precipitation method and their release properties, Int. J. Pharm., 304, 220 (2005). https://doi.org/10.1016/j.ijpharm.2005.08.008
  39. X. Chen, T. J. Young, M. Sarkari, R. O. Williams, and K. P. Johnston, Preparation of cyclosporine a nanoparticles by evaporative precipitation into aqueous solution, Int. J. Pharm., 242, 3 (2002). https://doi.org/10.1016/S0378-5173(02)00147-3
  40. D. Quintanar-Guerrero, E. AlIeman, H. Fessi, and E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers, Drug Dev. Ind. Pharm., 24, 1113 (1998). https://doi.org/10.3109/03639049809108571
  41. H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, and S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm., 55, R1 (1989). https://doi.org/10.1016/0378-5173(89)90281-0
  42. M. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion-diffusion process, J. Colloid Interface Sci., 317, 458 (2008). https://doi.org/10.1016/j.jcis.2007.09.081
  43. J. Jung and M. Perrut, Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluids, 20, 179 (2001). https://doi.org/10.1016/S0896-8446(01)00064-X
  44. R. Jagannathan, G. Irvin, T. Blanton, and S. Jagannathan, Organic nanoparticles: preparation, selfassembly, and properties, Adv, Funct. Mater, 16, 747 (2006). https://doi.org/10.1002/adfm.200600003
  45. C. Gomez-Gaete, N. Tsapis, M. Besnard, A. Bochot, and E. Fattal, Encapsulation of dexamethasone into biodegradable polymeric nanoparticles, Int. J. Pharm., 331, 153 (2007). https://doi.org/10.1016/j.ijpharm.2006.11.028
  46. S. A. Wissing, O. Kayser, and R. H. Muller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug. Deliv. Rev., 56, 1257 (2004). https://doi.org/10.1016/j.addr.2003.12.002
  47. J. Pardeike, A. Hommoss, and R. H. Muller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 366, 170 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.003
  48. D. Moinard-Checot, Y. Chevalier, S. Briancon, L. Beney, and H. Fessi, Mechanism of nanocapsules formation by the emulsion diffusion process, J. Colloid Interface Sci., 317, 458 (2008). https://doi.org/10.1016/j.jcis.2007.09.081
  49. Z. B. Zhang, Z. G. Shen, J. X. Wang, H. X. Zhang, H. Zhao, J. F. Chen, and J. Yun, Micronization of silybin by the emulsion solvent diffusion method, Int. J. Pharm., 376, 116 (2009). https://doi.org/10.1016/j.ijpharm.2009.04.028
  50. K. A. Shah, A. A. Date, M. D. Joshi, and V. B. Patravale, Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery, Int. J. Pharm., 345, 163 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.061
  51. T. K. Jain, J. Richey, M. Strand, D. L. Leslie- Pelecky, C. A. Flask, and V. Labhasetwar, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials. 29, 4012 (2008). https://doi.org/10.1016/j.biomaterials.2008.07.004
  52. Z. Chunfu, C. Jinquan, Y. Duanzhi, W. Yongxian, F. Yanlin, and T. Jiaju, Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy, Appl. Radiat. Isot., 61, 1255 (2004). https://doi.org/10.1016/j.apradiso.2004.03.114
  53. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Au nanoparticles target cancer, Nano, Today, 2, 18 (2007).
  54. P. Blasi, S. Giovagnoli, A. Schoubben, M. Ricci, and C. Rossi, Solid lipid nanoparticles for targeted brain drug delivery, Adv. Drug Deliv. Rev., 59, 454 (2007). https://doi.org/10.1016/j.addr.2007.04.011
  55. I. I. Slowing, J. L. Vivero-Escoto, C. Wu, and V. S. Li, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev., 60, 1278 (2008). https://doi.org/10.1016/j.addr.2008.03.012
  56. H. Cesur, I. Rubinstein, A. Pai, and H. Onyuksel, Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer, Nanomedicine, 5(2), 178 (2009). https://doi.org/10.1016/j.nano.2008.09.001
  57. D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacol Rev., 51, 691 (1999).
  58. S. K. Sahoo and V. Labhasetwar, Nanotech approaches to drug delivery and imaging, Drug Discov. Today, 8, 1112 (2003). https://doi.org/10.1016/S1359-6446(03)02903-9
  59. D. D. Lasic, Sterically stabilized liposomes in cancer therapy and gene delivery, Curr. Opin. Mol. Ther., 1, 177 (1999).
  60. N. Jain, B. P. Gupta, N. Thakur, R. Jain, J. Banweer, D. K. Jain, and S. Jain, Phytosome: a novel drug delivery system for herbal medicine, Int. J. Pharm. Sci. and Drug Res., 2(4), 224 (2010).
  61. R. Peschka, C. Dennehy, and Jr. F. C. Szoka, A simple in-vitro model to study the release kinetics of liposomes encapsulated material, J. Control. Release, 56, 41 (1998). https://doi.org/10.1016/S0168-3659(98)00067-4
  62. N. Moussaoui, M. Cansell, and A. Denizot, Marinosomes marine lipid-based liposomes: physical characterization and potential applications in cosmetics, Int. J. Pharm., 242, 361 (2002). https://doi.org/10.1016/S0378-5173(02)00217-X
  63. V. B. Patravale and S. D. Mandawgade, Novel cosmetic delivery systems: an application update, Int. J. Cosmet. Sci., 30, 19 (2008). https://doi.org/10.1111/j.1468-2494.2008.00416.x
  64. K. Stanzl, L. Zastrow, J. Rdding, and C. Artmann, The effectiveness of molecular oxygen in cosmetic formulation, Int. J. Cosmet. Sci., 18(3), 137 (1996).
  65. G. Nicolaos, S. Crauste-Manciet, R. Farinotti, and D. Brossard, Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion, Int. J. Pharm., 263, 165 (2003). https://doi.org/10.1016/S0378-5173(03)00365-X
  66. D. S. Mou, H. B. Chen, D. R. Du, C. W. Mao, J. L. Wan, H. B. Xu, and X. L. Yang, Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs, Int. J Pharm., 353, 270 (2008). https://doi.org/10.1016/j.ijpharm.2007.11.051
  67. C. C. Muller-Goymann, Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration, Eur. J. Pharm. Biopharm., 58(2), 343 (2004). https://doi.org/10.1016/j.ejpb.2004.03.028
  68. W. K. Fong, T. Hanley, and B. J. Boyd, Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo, J. Control. Release, 135, 218 (2009). https://doi.org/10.1016/j.jconrel.2009.01.009
  69. D. I. Nesseem, Formulation and evaluation of itraconazole via liquid crystal for topical delivery system, J. Pharm. Biomed. Anal., 26(3), 387 (2001). https://doi.org/10.1016/S0731-7085(01)00414-9
  70. D. Libster, A. Aserin, E. Wachtel, G. Shoham, and N. Garti, An $H_{II}$ liquid crystal-based delivery system for cyclosporin A: physical characterization, J. Colloid Interface Sci., 308(2), 514 (2007). https://doi.org/10.1016/j.jcis.2006.12.084
  71. C. Guo, J. Wang, F. Cao, R. J. Lee, and G. Zhai, Lyotropic liquid crystal systems in drug delivery, Drug Discov. Today, 15, 1032 (2010). https://doi.org/10.1016/j.drudis.2010.09.006
  72. S. Z. Mohammady, M. Pouzot, and R. Mezzenga, Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment, Biophys. J., 96(4), 1537 (2009). https://doi.org/10.1016/j.bpj.2008.10.057
  73. S. Y. Lin, C. J. Ho, and M. J. Li, Precision and reproducibility of temperature response of a thermo- responsive membrane embedded by binary liquid crystals for drug delivery, J. Control. Release, 73(2,3), 293 (2001). https://doi.org/10.1016/S0168-3659(01)00300-5
  74. S. Y. Lin, H. L. Lin, and M. J. Li, Manufacturing factors affecting the drug delivery function of thermo- responsive membrane prepared by adsorption of binary liquid crystals, Eur. J. Pharm. Sci., 17(3), 153 (2002). https://doi.org/10.1016/S0928-0987(02)00165-3
  75. J. Bender, M. B. Ericson, N. Merclin, V. Ianie, A. Rosen, S. Engstrom, and J. Moan, Lipid cubic phases for improved topical drug delivery in photodynamic therapy, J. Control. Release, 106, 350 (2005). https://doi.org/10.1016/j.jconrel.2005.05.010
  76. E. Esposito, R. Cortesi, M. Drechsler, L. Paccamiccio, P. Mariani, C. Contado, E. Stellin, E. Menegatti, F. Bonina, and C. Puglia, Cubosome dispersions as delivery systems for percutaneous administration of indomethacin, Pharm. Res., 22, 2163 (2005). https://doi.org/10.1007/s11095-005-8176-x
  77. L. B. Lopes, J. L. C. Lopes, D. C. R. Oliveira, J. A. Thomazini, M. T. J. Garcia, M. C. A. Fantini, J. H. Collett, and M. V. L. B. Bentley, Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery, Eur. J. Pharm. Biopharm.. 63, 146 (2006). https://doi.org/10.1016/j.ejpb.2006.02.003
  78. L. B. Lopes, D. A. Ferreira, D. Paula, M. T. J. Garcia, J. A. Thomazini, M. C. A. Fantini, and M. V. L. B. Bentley, Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A, Pharm. Res., 23, 1332 (2006). https://doi.org/10.1007/s11095-006-0143-7
  79. L. B. Lopes, F. F. F. Sperettaa, and M. V. L. B. Bentley, Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems, Eur. J. Pharm. Sci., 32, 209 (2007). https://doi.org/10.1016/j.ejps.2007.07.006
  80. M. Cohen-Avrahami, A. Aserin, and N. Garti, HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac, Colloid Surf. B, 77, 131 (2010). https://doi.org/10.1016/j.colsurfb.2010.01.013
  81. J. Frelichowska, M. Bolzinger, J. Valour, H. Mouaziz, J. Pelletier, and Y. Chevalier, Pickering W/O emulsions: drug release and tropical delivery, Int. J. Pharm., 368, 7 (2009). https://doi.org/10.1016/j.ijpharm.2008.09.057
  82. J. Frelichowska, M. Bolzinger, J. Pelletier, J. Valour, and Y. Chevalier, Tropical delivery of lipophilic drugs from O/W pickering emulsions, Int. J. Pharm., 371, 56 (2009). https://doi.org/10.1016/j.ijpharm.2008.12.017
  83. S. A. Fotinos, Handbook of Cosmetic Science and Technology, eds. A. O. Barel, M. Paye, and H. I. Maibach, 233, Marcel Dekker Inc., New York (2001).
  84. S. H. Jeong, W. G. Cho, J. K. Choi, and J. P. Ryoo, A systematic approach to cosmetic patch development, Cosmet. Toilet., 116(1), 39 (2001).
  85. W. G. Cho, M. J. Rang, Y. S. Song, Y. H. Lim, and H. W. Park, Enhanced transdermal delivery of vitamin C derivative using gel patch with flexible thin layer battery, J. Soc. Cosmet. Sci., Kor., 33(1), 23 (2007).
  86. S. Mitragotri and J. Kost, Low-frequency sonophoresis, Adv. Drug Deliv. Rev., 56, 589 (2004). https://doi.org/10.1016/j.addr.2003.10.024
  87. D. Bommannan, H. Okuyama, P. Stauffer, and R. H. Guy, The use of high-frequency ultrasound to enhance transdermal drug delivery, Pharm. Res., 9, 559 (1992). https://doi.org/10.1023/A:1015808917491
  88. S. Mitragotri, Synergistic effect of enhancers for transdermal drug delivery, Pharm. Res., 17, 1354 (2000). https://doi.org/10.1023/A:1007522114438
  89. P. Santoianni, M. Nino, and G. Calabro, Intradermal drug delivery by low frequency sonophoresis (25 kHz), Dermatol. Online J., 10, 24 (2004).
  90. N. Katz, D. Shapiro, T. Herrmann, J. Kost, and L. Custer, Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device, Anesth. Analg., 98, 371 (2004).
  91. J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, A multichannel neural probe for selective chemical delivery at the cellular level, IEEE Trans. Biomed. Eng., 44, 760 (1997). https://doi.org/10.1109/10.605435
  92. J. H. Park, S. O. Choi, S. M. Seo, Y. B. Choy, R. Mark, and A. Prausnitz, Microneedle roller for transdermal drug delivery, Eur. J. Pharm. Biopharm., 76, 282 (2010). https://doi.org/10.1016/j.ejpb.2010.07.001
  93. M. M. Badrana, J. Kuntsche, and A. Fahra, Skin penetration enhancement by a microneedle device ($dermaroller^{{\circledR}}$) in vitro: dependency on needle size and applied formulation, Eur. J. Pharm. Sci., 36, 511 (2009). https://doi.org/10.1016/j.ejps.2008.12.008
  94. El-S. Khafagy, M. Morishita, Y. Onuki, and K. Takayama, Current challenges in non-invasive insulin delivery systems: a comparative review, Adv. Drug Deliv. Rev.. 59, 1521 (2007). https://doi.org/10.1016/j.addr.2007.08.019
  95. C. Ramachandran and D. Fleisher, Transdermal delivery of drugs for the treatment of bone diseases, Adv. Drug Deliv. Rev.. 42, 197 (2000). https://doi.org/10.1016/S0169-409X(00)00062-4
  96. H. S. Tan and W. R. Pfister, Pressure-sensitive adhesives for transdermal drug delivery systems, PSTT, 2(2), 60 (1999).
  97. J. A. Subramony, A. Sharma, and J. B. Phipps, Microprocessor controlled transdermal drug delivery, Int. J. Pharm., 317, 1 (2006). https://doi.org/10.1016/j.ijpharm.2006.03.053