Effective Dose Determination From CT Head & Neck Region

두경부(Head & Neck) CT 검사 시 장기의 유효선량 측정

  • Yun, Jae-Hyeok (Department of Diagnostic Radiology Chonbuk National University Hospital) ;
  • Lee, Kwang-Weon (Department of Diagnostic Radiology Chonbuk National University Hospital) ;
  • Cho, Young-Ki (Department of Diagnostic Radiology Chonbuk National University Hospital) ;
  • Choi, Ji-Won (Department of radiological Sciences Jeon Ju University) ;
  • Lee, Joon-Il (Department of radiological Sciences Daegu Health Colleage)
  • 윤재혁 (전북대학교병원 영상의학과) ;
  • 이광원 (전북대학교병원 영상의학과) ;
  • 조영기 (전북대학교병원 영상의학과) ;
  • 최지원 (전주대학교 방사선학과) ;
  • 이준일 (대구보건대학 방사선과)
  • Received : 2011.04.18
  • Accepted : 2011.06.02
  • Published : 2011.06.30

Abstract

In this study, we present the measurements of effective dose from CT of head & neck region. A series of dose measurements in anthropomorphic Rando phantom was conducted using a radio photoluminescent glass rod dosimeter to evaluate effective doses of organs of head and neck region from the patient. The experiments were performed with respect to four anatomic regions of head & neck: optic nerve, pons, cerebellum, and thyroid gland. The head & neck CT protocol was used in the single scan (Brain, 3D Facial, Temporal, Brain Angiography and 3D Cervical Spine) and the multiple scan (Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spine+Brain Angiography). The largest effective dose was measured at optic nerve in Brain CT and Brain Angiography. The largest effective dose was delivered to the thyroid grand in 3D faical CT and 3D cervical spine, and to the pons in Temporal CT. In multiple scans, the higher effective dose was measured in the thyroid grand in Brain+3D Facial, Brain+3D Cervical Spine, Brain+3D Facial+Temporal and Brain+3D Cervical Spine+Brain Angiography. In addition, the largest effective dose was delivered to the cerebellum in Brain CT+Brain Angiography CT and higher effective dose was delivered to the pons in Brain+Temporal CT. The results indicate that in multiple scan of Brain+3D Cervical Spine+Brain Angiography, effective dose was 2.52 mSv. This is significantly higher dose than the limitation of annual effective dose of 1 mSv. The effective dose to the optic nerve was 0.31 mSv in Brain CT, which shows a possibility of surpassing the limitation of 1 mSv by furthre examination. Therefore, special efforts should be made in clinical practice to reduce dose to the patients.

두경부(Head & Neck) CT(Computed Tomography)검사에서 환자가 받는 피폭선량 측정을 위하여 인체등가물질로 만든 Rando phantom과 유리선량계를 이용하여 두경부 검사에 따른 환자의 흡수선량의 변화를 실험을 통하여 연구하였다. 인체두부모형을 안와신경(optic nerve), 교뇌(pons), 소뇌(cerebellum), 갑상선(thyroid)으로 나누어, 두경부(Head & Neck) 부위의 검사를 단독검사(Brain, 3D Facial, Temporal, Brain Angiography, 3D Cervical Spine)와 복합검사(Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spin+Angiography)로 구분하여 유효선량의 변화를 실험한 후 결과를 측정하였다. 단순 Brain검사와 Brain Angio검사에는 optic nerve에 유효 선량이 높게 분석되었으며, 또한 Temporal검사에는 Pons에, 3D facial 검사와 3D Cervical Spin검사에는 thyroid의 유효선량 값이 높게 나타났다. 복합적으로 이루어는 검사 중 두경부의 Brain+Brain Angio의 검사는 cerebellum의 부위, Brain+3D facial 검사와 Brain+3D Cervical Spin의 복합검사는 thyroid의 부위, Brain+Temporal의 검사에는 pon's 부위 유효 선량 값이 높게 나타났다. Brain +3D facial +Temporal의 복합검사와 Brain+3D Cervical Spin+Angio의 복합검사는 thyroid의 부위에 유효 선량 값이 높게 분석 되었다. 본 연구 결과 Brain+3D Cervical Spin+Brain Angio 복합검사인 경우의 유효 선량은 2.51858 mSv로 일반인의 연간 유효선량한도 1 mSv의 피폭을 초과하는 결과가 나왔다. 또한, Brain 단순 검사 시 optic nerve는 0.31312 mSv의 유효선량으로 향후 방사선학 검사가 이루어질 경우, 두경부의 일반인의 연간 유효선량을 훨씬 초과할 것이라 사료된다. 따라서 진료의 필요성에 의해서 시행되는 CT검사일지라도 질환 병변의 특성에 맞게 CT촬영조건 변화를 주면서 환자의 피폭선량을 최소한으로 할 수 있는 다양한 검사방법의 연구가 필요하다고 사료된다.

Keywords

References

  1. 2007 CT market summary report. Des Plaines, IL: IML Medical Information Division, 2007
  2. ICRP. 2000 Managing patient dose in computed tomography, ICRP Publication 87(1)
  3. International Commission on Radiological Protection, Managing Patient Dose in Computed tomography, in Ann ICRP 2000, ICRP Publication 87, Vol 30, Issue 4
  4. Hendee WR. Real and perceived risks of medical radiation exposure. West J of Med 3: 380-386, 1983
  5. Korea atomic energy Decrees. Korea atomic energy research institute 1996
  6. The standard to decide radiation dose. The Minister of ministry of science and technology 1998
  7. Hall EJ, Phil D, D. Sc, F.A. C. R. Radiation biology for the radiologist, 4th ed. J, B, Lippincott 311-384, 1994
  8. Karas JS, Stanbury JB. Fatal radiation syndrome from an accidental nuclear excursion. N Engl J Med 272:755, 1965 https://doi.org/10.1056/NEJM196504152721501
  9. Shipman TL, Lushbaugh CC. Acute radiation death resulting from an accidental nuclear critical excusion. J Occup Med 3(suppl.) 145-192, 1961
  10. Upton AC. The dose response relation in radiation induced cancer. Cancer Res 21:717-729, 1961
  11. Rugh R. Low levels of Xirradiation and the early mammalian embrio. AJR 87:559-566, 1962
  12. Grazer RF, Meislin HW, Western BR, Criss EA. Exposure to ionizing radiation in the emergency department from commonly performed portable radiographs; Ann Emerg Med April 16(4): 417-420, 1987 https://doi.org/10.1016/S0196-0644(87)80363-3
  13. Merriam GR, Focht EF. Clinical study of radiation cataracts and the relation ship to dose. AJR 77:759-785, 1957
  14. Russell WL. Studies in mammalian radiation genetics. Nucleonics 23:53-56, 1962
  15. International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. In:ICRP Publication 103. Ahn. ICRP(2007)37(2/3). Oxford, UK:Elsevier Science.
  16. EUR. European guidelines on quality criteria for computed tomography. EUR 16261, May 1999
  17. 김문찬. 최신 CT 영상기술: 이론 및 실기편. 청구문화사 540-558, 2007
  18. Brenner, Hall EJ. Computed tomography: an increasing source of radition exposure. N Engl J Med 357:2277-2284, 2007 https://doi.org/10.1056/NEJMra072149
  19. Chiyo Yamauchi-Kawaura, Keisuke Fujii, Takahiko Aoyama et al.: Evaluation of radiation doses from MDCT imaging in Otolaryngology, Radiat. Prot. Dosim. 136, 38-44, 2009 https://doi.org/10.1093/rpd/ncp138