DOI QR코드

DOI QR Code

Coupled Model Development between Groundwater Recharge Quantity and Climate Change Using GIS

GIS를 이용한 기후변화 연동 지하수 함양량 산정 모델 개발 및 검증

  • Lee, Moung-Jin (Korea Adaptation Center for Climate Change, Korea Environment Institute) ;
  • Lee, Joung-Ho (Korea Adaptation Center for Climate Change, Korea Environment Institute)
  • 이명진 (한국환경정책.평가연구원 국가기후변화적응센터) ;
  • 이정호 (한국환경정책.평가연구원 국가기후변화적응센터)
  • Received : 2011.05.31
  • Accepted : 2011.07.22
  • Published : 2011.09.30

Abstract

Global climate change is disturbing the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes. In this study, the authors selected a relevant climate change scenario, A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by periodically and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems of ground circulation system, it may be urgent to recalculate the groundwater recharge quantity and consequent change under future climate change. The space-time calculation of changes of the groundwater recharge quantity in the study area may serve as a foundation to present additional measures to improve domestic groundwater resource management.

본 연구의 목적은 지리정보를 활용하여 기후변화에 따른 지하수 함양량 산정 모델 개발 및 검증을 수행하는 것이다. 이를 위하여 기후변화에 따른 지하수 함양량 변화를 산정하는 방법론을 제시하였고, 지리정보시스템을 활용하여 연구지역의 시기별 미래 지하수 함양량을 추정하였다. 연구지역은 낙동강 본류를 포함하는 낙동강 유역을 선정하였다. 최종 연구결과는 미래 기후변화에 따른 시기별 강우량, 함양률, 함양량을 추정하였다. 함양량 및 함양률은 기후변화에 따른 강우량의 변화와 함께 변화하는 추세를 나타내고 있는 것으로 파악되었다. 본 연구에서는 지리정보를 활용하여 기존에 기후변화와 지하수 함양량의 불명확한 관계를 정량적으로 분석하였으며, 미래 기후변화 예측 결과를 반영한 연구지역 내 지하수 함양률 변화를 시-공간적으로 산정하였다. 또한 유역내 기저유출량과 비교 분석을 통하여 검증하였다. 앞으로 연계모델의 고도화 방안 및 현장조사가 추가 된다면 보다 정량적으로 기후변화와 지하수 함양량의 상관관계를 파악 할 수 있으며, 향후 본 연구는 수자원으로 이용이 증가되는 지하수의 전반적인 관리 및 효율적인 운영 체제 구축을 위한 한 축을 차지 할 수 있다는 점에서 중요성이 있다고 하겠다.

Keywords

References

  1. 강형식, 김호정, 이진희, 홍현정, 조성윤, 주기재, 정인철, 정광석. 2010. 기후변화 대응을 위한 적정 하천공간 확보 방안. II 한국환경정책.평가연구원 연구보고서.
  2. 고경석. 2009. 기후변화에 따른 국내 지하수자원 취약성. 제14차 지하수 정보협력 포럼 발표자료.
  3. 김규범. 2008. 미국의 기후변화에 대비한 지하수 조사.이용 및 관리. 건설교통부 연구보고서.
  4. 김규범. 2009. 기후변화와 지하수 양수에 따른 지표수 영향. 제14차 지하수 정보협력 포럼 발표자료.
  5. 김성준, 채효석. 2000. 격자기반의 토양수분추적에 의한 지하수함양량 추정기법 개발. 한국수자원학회논문집. 33(1):61-72.
  6. 농촌진흥청 농업과학기술원. 2007. (수문해석을 위한)토양수리특성과 토양전자지도의 활용 농촌진흥청 연구보고서.
  7. 이승호, 허인혜, 이경미, 김선영, 이윤선, 권원태. 2007. 한국의 열파분포와 그 원인에 관한 연구. 대한지리학회지 42(3):332-343
  8. 이정호, 이영준, 이수재. 2005. 터널로 인한 지하수 영향 저감방안 연구. 한국환경정책.평가연구원 연구보고서.
  9. 임은진, 이재영, 최상일. 2004. 폐기물 매립지의 최종 복토 구조에 따른 침출계수 변화에 관한 연구. 한국지하수토양환경학회지 9(2):48-53.
  10. 조성현, 문상호, 고동찬, 조민조, 송무영. 2005. 추적자(Cl)를 이용한 유성지역 소유역에서의 유출수문곡선분리와 기저유출량의 산정. 지질학회지 41(3):427-436.
  11. 정일문, 김남원, 김칠겸, 이정우, 김태희, 김용제, 김구영, 하규철, 전철민, 이도훈. 2007. 우리나라 지역특성에 맞는 최적 지하수 함양량 산정기법 개발. 건설교통부. 연구보고서. 363쪽.
  12. 정일문, 김남원, 이정우, 이병주. 2006. SWAT 모형을 이용한 무심천 유역의 지하수 함양량 추정. 2006년 한국수자원학회 학술발표회. 76-79쪽.
  13. 박노욱, 장동호. 2008. 수치표고모델과 다변량 크리깅을 이용한 기온 및 강수 분포도 작성. 대한지리학회지 43(6):1001-1015.
  14. Brown D.P., A.C. Comrie. 2002. Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Clim Res. 22:115-128. https://doi.org/10.3354/cr022115
  15. Risser, D.W. 2008. Spatial distribution of ground-water recharge estimated with a water-budget method for the Jordan Creek watershed, Kehigh County, Pennsylvania. Scientific Investigations Report 2008-5041, U.S. Geological Survey.
  16. Risser, D.W., W.J. Gbur and G.J. Folmar. 2009. Comparison of recharge estimates at a small watershed in east-central Pennsylvania, USA. Hydrogeology Journal 17:287-298. https://doi.org/10.1007/s10040-008-0406-y
  17. Rosenberg, N.J., D.J. Epstein, D. Wang, L. Vail, R. Srinivasan and J.G. Arnold. 1999. Possible impacts of global warming on the hydrology of the Ogallala Aquifer Region. Climatic Change 42:677-692. https://doi.org/10.1023/A:1005424003553
  18. Schroeder, P.R., T.S Dozier, P.A. Zappi, B.M. McEnroe, J.W. Sjostrom and R.L. Peyton,. 1994. The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.
  19. Scibek, J., D.M. Allen, A.J. Cannon and P.H. Whitfield. 2007. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology. 333:165-181. https://doi.org/10.1016/j.jhydrol.2006.08.005
  20. Brouyere, S., G. Carabin and A. Dassargues. 2004. Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeology Journal 12:123-134.
  21. USDA, Soil Conservation Service. 1985. National engineering handbook, section 4, hydrology. US Government Printing Office, Washington, D.C.
  22. Walker, G.R., L. Zhang, T.W. Ellis, T.J. Hatton and C. Petheram. 2002 Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeology Journal 10:68-90. https://doi.org/10.1007/s10040-001-0181-5
  23. 한강홍수통제소 http://www.hrfco.go.kr.

Cited by

  1. A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation vol.20, pp.3, 2015, https://doi.org/10.7857/JSGE.2015.20.3.074
  2. Development of a Meso-Scale Distributed Continuous Hydrologic Model and Application for Climate Change Impact Assessment to Han River Basin vol.17, pp.3, 2014, https://doi.org/10.11108/kagis.2014.17.3.160
  3. Priority Assessment for Groundwater Contamination Management Using Analytic Hierarchy Process (AHP) and GIS Approach vol.18, pp.5, 2013, https://doi.org/10.7857/JSGE.2013.18.5.026
  4. Field Applications on Groundwater Management Scheme of Subwatershed Unit in Hampyeong-Gun vol.46, pp.6, 2013, https://doi.org/10.9719/EEG.2013.46.6.545
  5. An Assessment of Groundwater Contamination Vulnerability and Priority Areas for Groundwater Management Using GIS and Analytic Hierarchy Process vol.18, pp.3, 2015, https://doi.org/10.11108/kagis.2015.18.3.035
  6. Effect of Temperature and Plow Pan on Water Movement in Monolithic Weighable Lysimeter with Paddy Sandy Loam Soil during Winter Season vol.49, pp.4, 2016, https://doi.org/10.7745/KJSSF.2016.49.4.300
  7. 미래 확률강우량 및 인공신경망을 이용한 산사태 위험도 분석 기법 개발 및 검증 vol.15, pp.2, 2011, https://doi.org/10.11108/kagis.2012.15.2.057
  8. 빈도비 모델과 GIS을 이용한 침수 취약 지역 예측 기법 개발 및 검증 vol.15, pp.2, 2011, https://doi.org/10.11108/kagis.2012.15.2.086
  9. 퍼지모형과 GIS를 활용한 기후변화 홍수취약성 평가 - 서울시 사례를 중심으로 - vol.15, pp.3, 2012, https://doi.org/10.11108/kagis.2012.15.3.119
  10. SWAT을 이용한 미래기후변화에 따른 금강유역의 지하수위 거동 평가 vol.51, pp.3, 2011, https://doi.org/10.3741/jkwra.2018.51.3.247
  11. Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea vol.11, pp.6, 2011, https://doi.org/10.3390/su11061678
  12. Assessment of Climate Change Impact on Future Groundwater-Level Behavior Using SWAT Groundwater-Consumption Function in Geum River Basin of South Korea vol.11, pp.5, 2011, https://doi.org/10.3390/w11050949
  13. Detection of High-level PM2.5 Occurrences Applying Local Outlier Factor (LOF) Algorithm vol.37, pp.1, 2011, https://doi.org/10.5572/kosae.2021.37.1.125