DOI QR코드

DOI QR Code

Precise Tidal Simulation on the Yellow Sea and Extended to North Western Pacific Sea

황해 및 북서태평양 확장해역 정밀조석모의

  • Suh, Seung-Won (Department of Coastal Construction Engineering, Kunsan National University) ;
  • Kim, Hyeon-Jeong (Department of Ocean Science & Engineering, Kunsan National University)
  • 서승원 (군산대학교 해양건설공학과) ;
  • 김현정 (군산대학교 대학원 해양산업공학과)
  • Received : 2011.04.12
  • Accepted : 2011.05.12
  • Published : 2011.06.30

Abstract

Finite element grid refinements with different intensities having 14 K, 52 K and 211 K on the Yellow Sea (YS) have been constructed to make precise tidal simulations. In the meanwhile 57 K grid was made to the extended North Western Pacific (NWP) sea. Numerical simulation were done based on 32 parallel processors by using pADCIRC v 49.21 model. In the YS tidal simulation on YS-G52K and YS-G211K grid structure, KorBathy30s and ETOPO1 bathymetry data are used and 4 major tidal constituents are prescribed from FES2004. Computed results are in good agreement within 0.138 meter in RMS error for amplification and 14.80 degree of phase compared to observed tidal records. Similar error bounds are acquired in the extended NWP tidal simulation on NWP-G57K grid with 8 tidal constituent prescription on the open boundary.

정밀조석모의를 위한 유한요소 격자가 황해 영역에서 절점밀집도 14 K, 52 K 및 211 K 등으로 세련화되어 구축되었으며, 북서태평양을 포함하는 광역에 대해 57K의 절점을 갖는 격자체계가 구축되었다. 수치실험은 32개의 병렬프로세서에서 pADCIRC v 49.21 모형을 이용하여 수행하였다. 조석모의는 YS-G52K, YS-G211K 격자에서 KorBathy30s와 ETOPO1 수심자료를 적용하고, FES2004로부터 추출된 4 분조를 개방경계에 적용하여 모의한 결과 관측치와는 진폭에서 RMS오차 0.138 m, 위상은 RMS오차 14.80 deg로 이전 황해 연구에 비해 개선된 결과가 나타났다. 북서태평양으로 확장된 영역인 NWP-G57K 격자의 개방경계에서 8 분조를 정의하여 모의한 결과 황해 조석모의 결과와 유사한 매우 만족스러운 결과가 도출되었다.

Keywords

References

  1. 국립해양조사원 (2010). 해안침수예상도 제작 및 보급 결과보고서.
  2. 김현정, 서승원 (2010). 황해를 포함한 북태평양 해역 조석모의 및 연안제방 해수범람 재현. 한국해안.해양공학회 학술발표논문집, 19, 73-76.
  3. 박선중, 강주환, 김양선, 문승록 (2010). 조석-해일 결합모형의 적용성 검토. 한국해안.해양공학회논문집, 22(4), 248-257.
  4. 변상신, 최병호, 김경옥 (2009). 병렬 유한요소 모형을 이용한 황해의 실시간 조석 및 태풍해일 산정. 한국군사과학기술학회지, 12(1), 29-36.
  5. 서승남 (2008). 한국 주변해역 30초 격자수심 - KorBathy30s. 한국해안.해양공학회논문집, 20(1), 110-120.
  6. 서승원 (1999a). 3차원 유한요소모형을 이용한 황해 및 동중국해의 조석 수동역학 해석. 대한토목학회논문집, 19(II-3), 375-387.
  7. 서승원 (1999b). 비선형 3차원 조화유한요소모형을 이용한 황해의 천해조석 발생. 대한토목학회논문집, 19(II-3), 389-399.
  8. 서승원 (2000). 유한요소 수동역학 모형에서의 질량보존 평가. 대한토목학회논문집, 20(2-B), 305-315.
  9. 서승원, 이화영 (2007). 병렬 클러스터 시스템 구축 및 유한요소 모형을 이용한 황해 조석재현. 한국해안.해양공학회지, 19(1), 1-15.
  10. 서승원, 유영칠, 김현정 (2010). 상세격자 모형을 통한 서해연 안의 정밀 조석 재현. 한국해안.해양공학회지, 311pp.
  11. 서승원 (2011). 서해연안 상세해상을 통한 천해조석 및 조석비 대칭 재현. 한국해안.해양공학회 논문집(투고중).
  12. 최병호, 홍성진 (2005). 둥지형 동적결합 조석 모형을 이용한 황해 및 동중국해의 조석모형. 한국해안.해양공학회지, 17(4), 243-258.
  13. 한국해양연구원 (1996). 한반도 주변 조석 조화상수 자료집.
  14. 한국해양연구원 (2010). 해일피해 예측 정밀격자 수치모델 구축 및 설계 해면 추산 연구보고서.
  15. Amante, C. and Eakins, B. W. (2009). ETOPO1 1 Arc-minute global relief model : procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center Marine Geology and Geophysics Division Boulder, Colorado.
  16. China Ocean Press (1992). Marine atlas of Bohai Sea. Yellow sea. East China Sea hydrology. Beijing.
  17. Chippada, S., Dawson, C.N. and Wheeler, M.F. (1996). Parallel computing for finite element models on surface water flows. Computational Methods in Water Resources XI, Computational Mechnics Publications, Southampton, U.K. : 63-70.
  18. Greenberg, D.A., Dupont, F., Layard, F.H., Lynch, D.R. and Werner, F.E. (2007). Resolution issues in numerical models of oceanic and coastal circulation. Continental Shelf Research 7(9), 1317-343.
  19. Hagen, S.C., Westerink, J.J., Kolar, R.L. and Horstmann, O. (2000). Two-dimensional, unstructured mesh generation for tidal models. Int. J. Numer. Meth. Fluids, 35, 669-686.
  20. Luettich, R.A., Jr., Westerink, J.J. and Scheffner, N.W. (1992). ADCIRC : an advanced three-dimensional circulation model for shelves coasts and esturies. report 1 : Theory and methology of ADCIRC-2DDI and ADCIRC-3DL, Dredging Research Program Technical Report DRP-92-6, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.
  21. Lyard, F., Lefevre. F., Letellier, T. and Francis, O. (2006). Modelling the global ocean tides: a modern insight from FES2004. Ocean Dynamics, 56, 394-415. https://doi.org/10.1007/s10236-006-0086-x
  22. McDonald, C.L. (2006). Automatic, unstructured mesh generation for 2D, shelf-based tidal models. MS thesis, Brigham Young University.
  23. Weaver, R.J and Luettich, R.A. (2010). 2D&3D Studies with ADCIRC in a Long Narrow Channel. The 14th ADCIRC Model Workshop, Vicksburg.

Cited by

  1. Advance in prediction of body tide and ocean tidal loading vol.20, pp.6, 2016, https://doi.org/10.1007/s12303-016-0016-y