DOI QR코드

DOI QR Code

Sea Level Rise due to Global Warming in the Northwestern Pacific and Seas around the Korean Peninsula

지구온난화에 의한 북서태평양 및 한반도 근해의 해수면 상승

  • Oh, Sang-Myeong (Graduate program in marine meteorology, Jeju National University) ;
  • Kwon, Seok-Jae (Ocean Research Lab., Korea Hydrographic and Oceanographic Administration) ;
  • Moon, Il-Ju (College of Ocean Science/Ocean and Environment Research Institute, Jeju National University) ;
  • Lee, Eun-Il (Ocean Research Lab., Korea Hydrographic and Oceanographic Administration)
  • 오상명 (제주대학교 해양기상학협동과정) ;
  • 권석재 (국토해양부 국립해양조사원 해양조사연구실) ;
  • 문일주 (제주대학교 해양과학대학/해양과환경연구소) ;
  • 이은일 (국토해양부 국립해양조사원 해양조사연구실)
  • Received : 2011.05.19
  • Accepted : 2011.06.08
  • Published : 2011.06.30

Abstract

This study investigates sea level (SL) rise due to global warming in the Northwestern Pacific (NWP) and Seas around the Korean peninsula (KP) using outputs of IPCC AR4 climate models. Particularly, components of the SL rise induced by a local steric effect, which was not considered in most climate models, were computed using model-projected 3-dimensional temperature and salinity data. Analysis of the SL data shows that the ratio of the SL rise in the NWP and KP was about two times higher than that in global mean and particularly the ratio in the Kuroshio extension region was the highest. The SL rises over 100 years estimated from MPI_ECHAM5 and GFDL_CM2.1 model by A1B scenario considering the thermosteric effect were 24 cm and 28 cm for the NWP and 27 cm and 31 cm for the Seas around the KP, respectively. Statistical analysis reveals that these SL rises are caused by the weakening of the Siberian High in winter as well as variations of pressure system in the NWP and by the resultant change of water temperature. It also found that the highest SL rise in the Kuroshio extension region of the NWP was connected with the large increase of water temperature in this area.

지구온난화로 인한 북서태평양 및 한반도 근해의 미래 해수면 상승을 IPCC AR4 기후 예측모델들의 결과를 이용하여 조사하였다. 본 연구에서는 대부분의 기후모델에서 제시하지 않은 지역적인 열팽창에 의한 해수면 상승을 3차원 수온과 염분 자료를 이용한 역학고도의 계산을 통해 분석하였다. 해수면 자료의 분석결과, 열팽창을 고려한 북서태평양 및 한반도 근해의 해수면 상승률은 전 지구 평균보다 최대 두 배까지 높게 나타났다. 특히, 쿠로시오 확장지역에서 가장 높은 해수면 상승 경향을 보였다. 열팽창을 고려한 A1B 시나리오에 의한 MPI_ECHAM5와 GFDL_CM2.1 모델 결과에서는 향후 100년 동안 북서태평양에서 각각 24 cm와 28 cm 그리고 한반도 근해에서 27 cm와 31 cm의 해수면이 상승하는 것으로 예측되었다. 통계분석 결과, 이러한 해수면 상승은 겨울철 시베리아 고기압의 약화와 북서태평양 해역의 기압장 변화 그리고 이로 인한 바람장 및 해류의 변화로 발생한 수온변화가 그 원인으로 분석된다. 특히, 쿠로시오 확장지역의 북상에 따른 수온 변화가 북서태평양에서 가장 큰 해수면 상승을 유발한 것으로 사료된다.

Keywords

References

  1. 국립해양조사원 (2010a). 지구온난화에 의한 해수면 변화 연구(II).
  2. 국립해양조사원 (2010b). 해수면 변동 정밀분석 및 예측(2차).
  3. 하경자, 정기용, 장새롬, 김기영 (2006). 복합위성자료(Topex/Poseidon, Jason-1, ERS, Envisat)를 이용한 한반도 주변해역에서의 해수면 고도 변화와 해수면 온도의 상관성 연구. Korean Journal of Remote Sensing, 22(6), 519-531. https://doi.org/10.7780/kjrs.2006.22.6.519
  4. Cabanes, C., Cazenave, A. and Provost, C. L. (2001). Sea level rise during past 40 years detetmined from satellite and in situ observations. Science, 294, 840-842. https://doi.org/10.1126/science.1063556
  5. Cazenave, A. and Nerem, R. S. (2004). Present-day sea level change: Observations and causes. Rev. Geophys., 42, RG3001.
  6. Choi, B. H., Kim, D. H. and Kim, J. W. (2002). Regional responses of climate in the northwestern Pacific Ocean to gradual global warming for $CO_2$ quadrupling. Journal of Meteorological Society, 80, 1427-1442 https://doi.org/10.2151/jmsj.80.1427
  7. Church, J. A. and White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. L01602.
  8. Domingues, C. D., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M. and Dunn, J. R. (2008). Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 1090-1093. https://doi.org/10.1038/nature07080
  9. IPCC, Climate Change (2007). The Physical Science Basis. Contribution of Working Group to the Fourth Assesment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.). 747-845 (Cambridge Univ. Press, 2007).
  10. Kang, S. K., Cherniawsky, J. Y., Foreman, M. G. G., Min, H. S., Kim, C. H. and Kang, H. W. (2005). Patterns of recent sea level rise in the East/Japan Sea from satellite altimetry and in situ data. J. Geophys. Res., 110.
  11. Kim, D.H. (1998). Sea Level Change due to Global Warming in the Northwestern Pacific Ocean. Ph.D. Thesis, Dept. of Civil Engineering, Sungkyunkwan University.
  12. Kim, K.Y. and North, G. R. (1997). EOFs of harmonizable cyclostationary processes. J. Amos. Sci., 54, 2416-2427.
  13. Lambeck, K. and Chappell, J. (2001). Sea level change through the last glacial cycle. Science, 292, 679-686. https://doi.org/10.1126/science.1059549
  14. Landerer, F.W., Jungclaus, J.H. and Marotzke, J. (2007). Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr. 37, 296-312. https://doi.org/10.1175/JPO3013.1
  15. Lin, I.I., Wu, C.C. and Pun, I.F. (2008). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons'' Intensification. Mon. Wea. Rev. 136, 3288-3306. https://doi.org/10.1175/2008MWR2277.1
  16. Miline, G. A., Gehrels, W. R., Hughes, C. W. and Tamisiea, M. E. (2009). Identifying the causes of sea-level change. Nature Geoscience 2, 471-478. https://doi.org/10.1038/ngeo544
  17. Nicholls, R. J. (2002). Analysis of global impacts of sea-level rise: a case study of flooding. Physics and Chemistry of the Earth, 27, 1455-1466. https://doi.org/10.1016/S1474-7065(02)00090-6
  18. Nerem, R. S. (1999). Measuring very low frequency sea level variations using satelite altimeter data. Global and Planetary, 20, 157-171. https://doi.org/10.1016/S0921-8181(98)00068-X
  19. Stammer, D. (2008). Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res., 113.
  20. Woodworth, P. L. and Player, R. (2003). The permanent service for mean sea level: an update to the 21st century. J. Coastal Res. 19, 287-295.
  21. Yin, J., Schlesinger, M. E. and Stouffer, R. J. (2009). Model projections of repid sea-level rise on the northeast coast of the United States. Nature Geoscience, 2, 262-266. https://doi.org/10.1038/ngeo462

Cited by

  1. A Study on the Decision for External Water Level of a River Considering Sea Level Rise vol.16, pp.4, 2016, https://doi.org/10.5392/JKCA.2016.16.04.604
  2. A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula vol.17, pp.4, 2016, https://doi.org/10.5762/KAIS.2016.17.4.464
  3. Forecasting of Sea-Level Rise using a Semi-Empirical Method vol.19, pp.1, 2013, https://doi.org/10.7837/kosomes.2013.19.1.001
  4. Estimation of the Regional Future Sea Level Rise Using Long-term Tidal Data in the Korean Peninsula vol.47, pp.9, 2014, https://doi.org/10.3741/JKWRA.2014.47.9.753
  5. Typhoon and storm surge intensity changes in a warming climate around the Korean Peninsula vol.66, pp.3, 2013, https://doi.org/10.1007/s11069-012-0422-z
  6. The Regional Steric Sea Level Rise due to Global Warming in the Northwestern Pacific vol.13, pp.4, 2013, https://doi.org/10.9798/KOSHAM.2013.13.4.267
  7. Long-term Change in Sea Level along the Eastern Coastal Waters of Korea using Tide Gauge, Water Temperature and Salinity vol.23, pp.5, 2014, https://doi.org/10.5322/JESI.2014.5.801
  8. Haeundae Beach in Korea: Seasonal-to-decadal wave statistics and impulsive beach responses to typhoons vol.51, pp.4, 2016, https://doi.org/10.1007/s12601-016-0053-5