DOI QR코드

DOI QR Code

Porcine Fatty Acid Synthase Gene Polymorphisms Are Associated with Meat Quality and Fatty Acid Composition

  • Kim, Sang-Wook (Department of Animal Science, Chungbuk National University) ;
  • Choi, Yang-Il (Department of Animal Science, Chungbuk National University) ;
  • Choi, Jung-Suck (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Choi, Bong-Hwan (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science) ;
  • Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
  • Received : 2011.02.09
  • Accepted : 2011.04.14
  • Published : 2011.06.30

Abstract

We assessed the effects of single-nucleotide polymorphisms (SNPs) within the porcine fatty acid synthase (FASN) gene regarding meat quality and fatty acid composition in two pig populations: Korean native pigs (KNP) were crossed with Yorkshire (YS) $F_2$, and KNP were crossed with Landrace (LR) $F_2$. Direct DNA sequencing using eight KNP and eight YS pigs revealed two SNPs: c.265C>T (silent) in exon 4 and c.6545A>C (Asn${\rightarrow}$His) in exon 39. The frequency of the two SNPs was analyzed using the polymerase chain reaction-restriction fragment length polymorphism method in seven pig breeds and their association with meat quality traits and fatty acid composition was studied. In the $KNP{\times}YSF_2$ population, both SNPs were significantly associated with the level of monounsaturated fatty acids, including palmitoleic (C16:1) and oleic acid (C18:1) (p<0.005). c.6545A>C was associated with intramuscular fat content in both populations. Our results indicate that variations in c.265C>T and c.6545A>C of the pig FASN can be used to select animals with better fatty acid composition and meat quality. Moreover, KNP was a useful breed for identifying genetic factors affecting meat quality and fatty acid composition and for producing high quality pork.

Keywords

References

  1. Abe, T., Saburi, J., Hasebe, H., Nakagawa, T., Misumi, S., Nade, T., Nakajima, H., Shoji, N., Kobayashi, M., and Kobayashi, E. (2009) Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Bio-Chem Genet. 47, 397-411. https://doi.org/10.1007/s10528-009-9235-5
  2. Barrett, J., Fry, B., Maller, J., and Daly, M. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265. https://doi.org/10.1093/bioinformatics/bth457
  3. Bhuiyan, M., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W., Kim, N. K., Kim, K. S., and Lee, J. H. (2009) DNA Polymorphisms in SREBF1 and FASN Genes Affect Fatty Acid Composition in Korean Cattle (Hanwoo). Asian- Aust. J. Anim. Sci. 22, 765-773. https://doi.org/10.5713/ajas.2009.80573
  4. Cannata, S., Engle, T., Moeller, S., Zerby, H., Radunz, A., Green, M., Bass, P., and Belk, K. (2010) Effect of visual marbling on sensory properties and quality traits of pork loin. Meat Sci. 85, 428-434. https://doi.org/10.1016/j.meatsci.2010.02.011
  5. Cameron, N. and Enser, M. (1991) Fatty acid composition of lipid in longissimus dorsi muscle of Duroc and British Landrace pigs and its relationship with eating quality. Meat Sci., 29, 295-307. https://doi.org/10.1016/0309-1740(91)90009-F
  6. Chakravarty, B., Gu, Z., Chirala, S., Wakil, S., and Quiocho, F. (2004) Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. P. Natl. Acad. Sci. 101, 15567-15572. https://doi.org/10.1073/pnas.0406901101
  7. Choi, K. M., Moon, J. K., Choi, S. H., Kim, K. S., Choi, Y. I., Kim, J. J., and Lee, C. K. (2008) Differential Expression of Cytochrome P450 Genes Regulate the Level of Adipose Arachidonic Acid in Sus Scrofa. Asian-Aust. J. Anim. Sci. 21, 967-971. https://doi.org/10.5713/ajas.2008.80059
  8. De, Smet. S., Raes, K., and Demeyer, D. (2004) Meat fatty acid composition as affected by fatness and genetic factors: a review. Anim. Res. 53, 81-98. https://doi.org/10.1051/animres:2004003
  9. Folch, J., Lees, M., Sloane-Stanley, G. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
  10. Gallardo, D., Quintanilla, R., Varona, L., Diaz, I., Ramirez, O., Pena, R., and Amills, M. (2009) Polymorphism of the pig acetyl coenzyme A carboxylase a gene is associated with fatty acid composition in a Duroc commercial line. Anim. Genet. 40, 410-417. https://doi.org/10.1111/j.1365-2052.2009.01854.x
  11. Kim, E. H., Choi, B. H., Kim, K. S., Lee, C. K., Cho, B. W., Kim, T. H., and Kim, J. J. (2007) Detection of Mendelian and parent-of-origin quantitative trait loci in a cross between Korean native pig and Landrace I. growth and body composition traits. Asian-Aust. J. Anim. Sci. 19, 1702-1705. https://doi.org/10.5713/ajas.2007.669
  12. Kim, S. S., Kim, J. R., Moon, J. K., Choi, B. H., Kim, T. H., Kim, K. S., Kim, J. J., and Lee, C. K. (2009) Transcriptional alteration of p53 related processes as a key factor for skeletal muscle characteristics in Sus scrofa. Mol. Cells. 28, 565-573. https://doi.org/10.1007/s10059-009-0159-z
  13. Kim, S. W., Lee, J. H., Kim, J. H., Won, Y. S., Kim, N. S., and Kim, K. S. (2010a) Effect of the Fatty Acid Synthase Gene for Beef Quantity Traits in Hanwoo Breeding Stock. Korea. J. Anim. Sci. Tech. 52, 9-16. https://doi.org/10.5187/JAST.2010.52.1.009
  14. Kim, S. W., Roh, J. G., Cho, Y. I., Choi, B. H., Kim, T. H., Kim, J. J., and Kim, K. S. (2010b) Development of Optimal Breeding Pigs Using DNA Marker Information. Genomics Inform. 8, 81-85. https://doi.org/10.5808/GI.2010.8.2.081
  15. Lepage, G. and Roy, C. (1986). Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid. Res. 27, 114-120.
  16. Li, S., Kim, S. W., Lee, J. J., Lee, J. H., Yoon, D., Kim, J. J., Jeong, Y. C., Jeon, S. H., Choi, J. W., Kim, N. S., and Kim, K. S. (2009) Characterization of the Bovine FASN Gene Variation for Carcass and Beef Quality Traits in Hanwoo. Korean. J. Anim. Sci.. Tech. 51, 185-192. https://doi.org/10.5187/JAST.2009.51.3.185
  17. Li, X., Kim, S. W., Choi, J. S., Lee, Y. M., Lee, C. K., Choi, B. H., Kim, T. H., Choi, Y. I., Kim, J. J., and Kim, K. S. (2010) Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol. Biol. Rep. 37, 3931-3939. https://doi.org/10.1007/s11033-010-0050-1
  18. Maier, T., Leibundgut, M., and Ban, N. (2008) The crystal structure of a mammalian fatty acid synthase. Science 321, 1315-1322. https://doi.org/10.1126/science.1161269
  19. Melton, S., Amiri, M., Davis, G., and Backus, W. (1982) Flavor and chemical characteristics of ground beef from grass-, forage-grain-and grain-finished steers. J. Anim. Sci. 55, 77-87.
  20. Moon, J. K., Kim, K. S., Kim, J. J., Choi, B. H., Cho, B. W., Kim, T. H., and Lee, C. K. (2009) Differentially expressed transcripts in adipose tissue between Korean native pig and Yorkshire breeds. Anim. Genet. 40, 115-118. https://doi.org/10.1111/j.1365-2052.2008.01798.x
  21. Morris, C., Cullen, N., Glass, B., Hyndman, D., Manley, T., Hickey, S., McEwan, J., Pitchford, W., Bottema, C., and Lee, M. (2007) Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18, 64-74. https://doi.org/10.1007/s00335-006-0102-y
  22. Munoz, G., Ovilo, C., Noguera, J., Sanchez, A., Rodriguez, C., and Silio, L. (2003) Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34, 234-235. https://doi.org/10.1046/j.1365-2052.2003.00987.x
  23. Munoz, G., Alves, E., Fernandez, A., Ovilo, C., Barragan, C., Estelle, J., Quintanilla, R., Folch, J., Silio, L., and Rodriguez, M. (2007) QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetylcoenzyme A carboxylase alpha genes. Anim. Genet. 38, 639-646. https://doi.org/10.1111/j.1365-2052.2007.01668.x
  24. Nestel, P., Clifton, P., and Noakes, M. (1994) Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J. Lipid. Res. 35, 656-662.
  25. Oh, H., Kim, H., Yang, H., Lee, J., Joo, Y., and Kim, C. (2008) Comparison of meat quality characteristics between crossbreeds. Korean J. Food Sci. Ani. Resour. 28, 171-180 https://doi.org/10.5851/kosfa.2008.28.2.171
  26. Smith, S., Witkowski, A., and Joshi, A. (2003) Structural and functional organization of the animal fatty acid synthase. Prog. Lipid. Res. 42, 289-317. https://doi.org/10.1016/S0163-7827(02)00067-X
  27. Smith, S., Lunt, D., Chung, K., Choi, C., Tume, R., and Zembayashi, M. (2006) Adiposity, fatty acid composition, and delta 9 desaturase activity during growth in beef cattle. J. Anim. Sci. 77, 478-486. https://doi.org/10.1111/j.1740-0929.2006.00375.x
  28. Stephens, M., Smith, N., and Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978-989. https://doi.org/10.1086/319501
  29. Wood, J., Nute, G., Richardson, R., Whittington, F., Southwood, O., Plastow, G., Mansbridge, R., Da, Costa. N., and Chang, K. (2004a) Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci. 67, 651-667. https://doi.org/10.1016/j.meatsci.2004.01.007
  30. Wood, J., Richardson, R., Nute, G., Fisher, A., Campo, M., Kasapidou, E., Sheard, P., and Enser, M. (2004b). Effects of fatty acids on meat quality: a review. Meat Sci. 66, 21-32. https://doi.org/10.1016/S0309-1740(03)00022-6
  31. Zhang, S., Knight, T., Reecy, J., and Beitz, D. (2008) DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition1. Anim. Genet. 39, 62-70. https://doi.org/10.1111/j.1365-2052.2007.01681.x

Cited by

  1. Evaluation of body growth and immunity-related differentially expressed genes through deep RNA sequencing in the piglets of Jeju native pig and Berkshire vol.46, pp.3, 2015, https://doi.org/10.1111/age.12281
  2. Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level vol.43, pp.5, 2016, https://doi.org/10.1007/s11033-016-3969-z
  3. Evaluation of Three Candidate Genes Affecting Fatty Acid Composition in Pigs vol.32, pp.1, 2012, https://doi.org/10.5851/kosfa.2012.32.1.6
  4. Disentangling Two QTL on Porcine Chromosome 12 for Backfat Fatty Acid Composition vol.24, pp.3, 2013, https://doi.org/10.1080/10495398.2012.763130
  5. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea vol.29, pp.9, 2016, https://doi.org/10.5713/ajas.16.0158
  6. Identification of Molecular Mechanisms Related to Pig Fatness at the Transcriptome and miRNAome Levels vol.11, pp.6, 2011, https://doi.org/10.3390/genes11060600