DOI QR코드

DOI QR Code

A Study on Char Oxidation Kinetics by Direct Measurement of Coal Ignition Temperature

석탄점화온도의 직접적인 측정에 의한 촤산화 반응율 도출에 대한 연구

  • Kwon, Jong-Seo (Graduate School of Mechanical Engineering, Pusan National University) ;
  • Kim, Ryang-Gyoon (Graduate School of Mechanical Engineering, Pusan National University) ;
  • Song, Ju-Hun (School of Mechanical Engineering, Pusan National University) ;
  • Chang, Young-June (School of Mechanical Engineering, Pusan National University) ;
  • Jeon, Chung-Hwan (School of Mechanical Engineering, Pusan National University)
  • 권종서 (부산대학교 기계공학부 대학원) ;
  • 김량균 (부산대학교 기계공학부 대학원) ;
  • 송주헌 (부산대학교 기계공학부) ;
  • 장영준 (부산대학교 기계공학부) ;
  • 전충환 (부산대학교 기계공학부)
  • Received : 2011.07.18
  • Accepted : 2011.11.30
  • Published : 2011.12.31

Abstract

The experiment was designed to study the char oxidation kinetics of pulverized coals commonly utilized in Korean power plants. The kinetics has been estimated using the Semenov's thermal spontaneous ignition theory adapted to coal char particle ignition temperature. The ignition temperature of coal char particle is obtained by a direct measurement of the particle temperature with photo detector as well as by means of a solid thermocouple which is used as both a heating and a measuring element. The ignition temperatures for subbituminous coal, Wira, and bituminous coal, Yakutugol, have been measured for 4 sizes in the range of 0.52-1.09 mm. The ignition temperature of the particle increases with the increasing diameter. The results were used to calculate the activation energy and the pre-exponential factor. As a result, the kinetic parameters are in an agreement with ones reported from other investigations.

본 연구의 목적은 한국화력발전소에서 사용되는 석탄의 촤 산화반응율을 연구하는 것이다. 석탄촤 산화반응율은 입자의 점화온도에 근거한 Semenov의 열착화이론을 활용하여 도출하였다. 석탄촤의 입자를 열전대를 통해 직접 가열 및 온도 측정을 할 수 있으며, 광각기 센서를 통해 석탄촤점화시 발생되는 빛의 강도를 계측함으로써 점화시점을 결정 할 수 있는 실험장치를 제안 하였다. 아역청탄인 Wira와 역청탄인 Yakutugol의 석탄촤 점화온도는 입자 직경의 변화에 따라 측정을했으며, 입자의 직경이 커질수록 석탄촤 점화온도는 상승하였다. 입자 직경에 따른 석탄촤 점화온도의 결과를 통해 활성화에너지 및 빈도인자를 도출하였다. 본 연구를 통해 도출한 석탄촤 산화반응율 값을 기존의 연구 데이터와 비교한 결과 유사함도 확인할 수 있었다.

Keywords

References

  1. Ryang Gyoon Kim, Ju Hun Song, Byoung Hwa Lee, Young June Chang, Chung Hwan Jeon. 2009, "Comparison of Devolatilization Kinetics of Pulverized Coals Utilized in Korea using a DAEM Method," Koean Chem. Eng. Res., Vol. 48, No. 1, pp. 110-115. https://doi.org/10.1021/ie800251j
  2. Byoung-hwa, Lee Ju-hun Song, Ki-tae Kang, Youngjune Chang, Chung-hwan Jeon. 2009, "Determination of char oxidation rates with different analytical methods," KSME(B), Vol. 33, No. 11, pp. 876-885. https://doi.org/10.3795/KSME-B.2009.33.11.876
  3. Mitchell, R.E., 1988, 22th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 69-78.
  4. Essenghigh, R.H., 1988, 22th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 89-96.
  5. Essenhigh, R.H., 1991, Energy and fuels, Vol. 5, pp. 41-46. https://doi.org/10.1021/ef00025a005
  6. Arthur, J.R., 1951, Tran. Farad. Soc., Vol. 47, pp. 164-178. https://doi.org/10.1039/tf9514700164
  7. Waters, B.J., Squires, R.G., Laurendeau, N.M., and Mitchell, R.E., 1988, Combustion and Flame, Vol. 74, pp. 91-106. https://doi.org/10.1016/0010-2180(88)90089-2
  8. Mitchell, R.E., Kee, R.J., Glarborg, P., and Coltrin, M.E., 1990, in Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittusburgh, pp. 1169-1176.
  9. Veglio F., Trifoni M., Pagnaelli F., Toro L., 2001, "Shrinking Core Model with Variable Activation Energy: a Kinetic Model of Magnetiferous Ore Leaching with Sulphuric Acid and Lactose," Hydrometallurgy, Vol. 60, pp. 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  10. Agnieszka Szubert, Michal L., Zygmunt S. 2006, "Application of Shrinking Core Model to Bioleaching of Black Shale Particles," Physicochemical Problems of Mineral Processing, Vol. 40, pp. 211-225.
  11. Jerzy Tomeczek., Juliusz., 1990, "A Method of Direct Measurement of Solid Fuel Particle Ignition Temperature," The Combustion Institute, pp. 1163-1167.
  12. Ashley S. Hull., and Pradeep K. Agarwal, 1998, "Estimation of kinetic rate parameters for coal combustion from measurements of the ignition temperature Ashley," Elsevier Science Ltd, Vol. 77, No. 9/10, pp. 1051-1058. https://doi.org/10.1016/S0016-2361(97)00268-8
  13. H. J. Mohlen and F. Sowa,1995, "Factors influencing the ignition of coal particles Studies with a pressurized heated-grid apparatus," Fuel, Vol. 74, No. 11, pp. 1551-1554. https://doi.org/10.1016/0016-2361(95)00135-R
  14. A. B. Fuertes, E. Hampartsoumian and A. Williams, 1993, "Direct measurement of ignition terperatures of pulverzed coal particles," Fuel, Vol. 72, No. 9, pp. 1287-1291. https://doi.org/10.1016/0016-2361(93)90127-N
  15. T. F. WALL and V. S. GURURAJAN, 1986, "Combustion Kinetics and the Heterogeneous Ignition of Pulverized Coal," COMBUSTION AND FLAME, Vol. 66, pp. 151-157. https://doi.org/10.1016/0010-2180(86)90087-8
  16. Henryk Karcz, Wlodzimierz Kordylewski and Wieslaw Rybak, 1980, "Evaluation of kinetic parameters ignition," Fuel, Vol. 59, pp. 799-802. https://doi.org/10.1016/0016-2361(80)90259-8
  17. Hassan Katalambula, Jun-ichiro Hayashi, and Tadatoshi Chiba, 1997, "Dependence of Single Coal Particle Ignition Mechanism on the Surrounding Volatile Matter Cloud," Energy & Fuels, Vol. 11, No. 5, pp. 1033-1039.
  18. Hassan Katalambula, Jun-Ichiro Hayashi and Tadatoshi Chiba, 1996, "Mechanism of Single Coal Particle Ignition Under Micorogravity Condition," Journal of Chemical Engineering of Japan, Vol. 30, No. 1, pp. 146-153.

Cited by

  1. Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.133