Impact of Application Rate of Non-ionic Surfactant Mixture on Initial Wetting and Water Movement in Root Media and Growth of Hot Pepper Plug Seedlings

비이온계 계면활성제 혼합물의 처리농도가 상토의 수분 보유 및 고추 플러그묘의 생장에 미치는 영향

  • Received : 2010.04.16
  • Accepted : 2010.07.02
  • Published : 2011.02.28

Abstract

In developing soil wetting agent using polyoxyethylene nonylphenyl ether (PNE) and polyoxyethylene castor oil (1:1; v/v), the effect of application rates on changes in concentration of PNE, initial wetting of peatmoss + perlite (7:3) medium, and growth of hot pepper (Capsicum annuum L. 'Knockwang') plug seedlings were investigated. The elevation of application rates of wetting agent increased the amount of water retained by the root media. The treatment of 2.5 $mL{\cdot}L^{-1}$ showed similar water retention to + control ($AquaGro^L$ 3.0 $mL{\cdot}L^{-1}$). Most of the liquid wetting agent (LWA) incorporated during the medium formulation leached out in the first and second irrigation, then it decreased gradually until 10 times in irrigation. In investigation of the influence of LWA on position of water infiltrating into root media, the vertical water movements in treatments of 0.5, 1.0, and 1.5 $mL{\cdot}L^{-1}$ were much faster than those in 0.0 $mL{\cdot}L^{-1}$ (-control), but relative speed of water movement decreased by the elevation in application rate of LWA to 2.0 or 2.5 $mL{\cdot}L^{-1}$. The evaporative water loss of root media that to contained various rate of LWA and irrigated to reach container capacity was the fastest in -control among the treatments and it delayed as the application rate of LWA was elevated. The plant height of 22.2 cm in 0.5 $mL{\cdot}L^{-1}$ and stem diameter of 3.26 mm in 1.0 $mL{\cdot}L^{-1}$ were the highest among the treatments tested. The treatment of 1.0 $mL{\cdot}L^{-1}$ also had the heaviest fresh and dry weights such among treatments tested as 3.08 g and 0.861 g per plant, respectively. The elevated application rate over than 1.5 $mL{\cdot}L^{-1}$ resulted in decreased seedling growth. The results mentioned above indicate that optimum application rate of LWA is 1.0 $mL{\cdot}L^{-1}$.

Polyoxyethylene nonylphenyl ether와 polyoxyethylene castor oil을 1:1(v/v)로 혼합하여 조제한 액상 토양습윤제(LWA)가 피트모스 + 펄라이트(7:3) 상토내 잔류성, 혼합상토의 초기 습윤화 및 고추(Capsicum annuum L. 'Knockwang') 플러그묘의 생육에 미치는 영향을 구명하고자 본 연구를 수행하였다. 토양습윤제의 처리량이 증가할수록 상토의 보수량이 뚜렷하게 증가하였고 본 연구에서 제조한 토양습윤제를 $2.5mL{\cdot}L^{-1}$의 비율로 처리한 구의 보수량이 AquaGroL을 $3.0mL{\cdot}L^{-1}$을 처리한 +대조구와 유사하였다. 처리된 토양습윤제는 처리 후 1 및 2번째 관수에서 대부분 용탈되었고, 10회 관수할 때까지 서서히 낮아지다가 10회 관수 이후에는 매우 낮은 농도로 분석되었다. 개발된 토양습윤제를 처리한 상토에서 관수한 수분의 수직방향으로 하강 속도를 측정한 결과 0.5, 1.0, 및 $1.5mL{\cdot}L^{-1}$의 비율로 처리한 구에서 -대조구보다 월등히 빨랐으나, 토양습윤제의 처리비율이 $2.0mL{\cdot}L^{-1}$ 이상으로 높아지면 점차 느려지는 경향을 보였다. 습윤제를 처리한 상토를 충분히 관수하고 온실에서 상토의 건조속도를 조사한 결과 무처리구의 건조속도가 가장 빨랐고, 개발된 토양습윤제의 처리비율이 높아질수록 상토의 건조속도가 느렸다. 파종 8주 후에 조사한 고추 플러그 묘의 생육에서 초장은 $0.5mL{\cdot}L^{-1}$ 처리에서 22.2cm로 가장 컸고, 줄기직경은 $1.0mL{\cdot}L^{-1}$ 처리에서 3.46mm로 가장 굵었으며, 생체중과 건물중은 $1.0mL{\cdot}L^{-1}$ 처리구에서 각각 식물체당 3.08g과 0.861g으로 조사되어 다른 시험구에 비해 유의하게 우수하였다. 그러나 $1.5mL{\cdot}L^{-1}$ 이상으로 토양습윤제의 처리량이 높아지면 점차 생육이 저조하였으며, 적정 처리량은 $1.0mL{\cdot}L^{-1}$라고 판단하였다.

Keywords

References

  1. Bilderback, T.E., W.C. Fonteno, and D.R. Johnson. 1982. Physical properties of media composed of peanut hulls, pine bark, and peat moss and their effect on azalea growth. J. Amer. Soc. Hort. Sci. 107:522-525.
  2. Blom, T.J. and B.D. Piott. 1992. Preplant moisture content and compaction of peatwool using two irrigation techniques on potted chrysanthemums. J. Amer. Soc. Hort. Sci. 117:220-223.
  3. Bowman, D.C., R.Y. Evans, and J.L. Paul. 1990. Fertilizer salts reduce hydration of polyacrylamide gels and affect physical properties of gel-amended container media. J. Amer. Soc. Hort. Sci. 115:382-386.
  4. Choi, J.M. and K.R. Min. 2000. Effect of carriers on residue of wetting agent containing polyoxyethylene octylphenyl ether, initial wetting and water movement in container media. Kor. J. Hort. Sci. Technol. 18:839-844.
  5. Choi, J.M., K.R. Min, and J.S. Choi. 2000. Soil residual activity of surfactant mixtures containing polyoxyethylene octylphenyl ether and their effect on initial wetting and water movement in container media. Kor. J. Hort. Sci. Technol. 18:612-620.
  6. Choi, J.M. and Y.D. Song. 2003. Effect of soil wetting agents on germination, growth, and nutrient uptake of common cockscomb in plug culture. J. Kor. Soc. Hort. Sci. 44:514-517.
  7. Collaborative International Pesticide Analytical Council (CIPAC). 1970. MT 53 method.
  8. Elliott, G.C. 1992. Imbibition of water by rockwool-peat container media amended with hydrophilic gel or wetting agent. J. Amer. Soc. Hort. Sci. 117:757-761.
  9. Fonteno, W.C. and T.E. Bilderback. 1993. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Amer. Soc. Hort. Sci. 118:217-222. Japanese Industrial Standard (JIS). 1975. K 3364.
  10. Letey, J., J. Osborn, and R.E. Pelishek. 1962. Measurment of liquid-solid contact angles in soil and sand. Soil Sci. 93:149-153. https://doi.org/10.1097/00010694-196203000-00001
  11. Nelson, P.V. 2003. Greenhouse operation and management. 6th ed. Prentice Hall, Englewood Cliff, N.J.
  12. Powel, C.C. 1982. Use of soil wetting agents for pot plants, Cooperative Extension Service, The Ohio State Univ. Vol. 11 (No. 6).
  13. Prince, T.A. and M.S. Cunningham. 1990. Response of easter lily bulbs to peat moisture content and the use of peat or of polyethylene-lined cases during handling and vernalization. J. Amer. Soc. Hort. Sci. 115:68-72.