Quantitative Measurement of Carbon Dioxide Consumption of a Whole Paprika Plant (Capsicum annumm L.) Using a Large Sealed Chamber

대형 밀폐 챔버를 이용한 파프리카(Capsicum annumm L.) 개체의 이산화탄소 소비량 측정 및 정량화

  • Shin, Jong-Hwa (Department of Plant Science, Seoul National University) ;
  • Ahn, Tae-In (Department of Plant Science, Seoul National University) ;
  • Son, Jung-Eek (Department of Plant Science, Seoul National University)
  • 신종화 (서울대학교 식물생산과학부) ;
  • 안태인 (서울대학교 식물생산과학부) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Received : 2010.12.28
  • Accepted : 2011.04.12
  • Published : 2011.06.30

Abstract

This study was carried out to clarify precise $CO_2$ demands of paprika plants (Capsicum annumm L.) by measuring photosynthesis rates of the leaves in high, low positions, and the $CO_2$ consumption of a whole plant in a large sealed chamber. A photosynthesis measuring system (LI-6400) was used to measure the photosynthetic rates of the leaves located in different positions. A large sealed chamber that can control inside environmental factors was developed for measuring $CO_2$ consumption by a whole paprika plant. With increase of radiation, photosynthetic rates of the leaves in higher position became larger than those in lower position. The $CO_2$ consumption by the plant was estimated by using decrement of $CO_2$ concentration from initial level of 1500 ${\mu}mol{\cdot}mol^{-1}$ in the chamber with increase of integrated radiation. A regression model for estimating $CO_2$ consumption by the plant (leaf area = 7,533.4 $cm^2$) was expressed with integrated radiation (x) and was suggested as $y=-0.06234+3.671^*x/(2.589+x)$ ($R^2=0.9966^{***}$). The photosynthetic rate of the whole plant measured in the chamber was 3.4 ${\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ under 300 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ light intensity, which is in-between photosynthetic rates of the leaves in high and low positions. For this reason, some differences between required and supplied $CO_2$ amounts in greenhouses might occur when depending too much on photosynthetic rates of leaves. Therefore, we can estimate more accurately $CO_2$ amount required in commercial greenhouses by using $CO_2$ consumption model of a whole plant obtained in this study in addition to leaf photosynthetic rate.

파프리카의 상하위엽의 광합성 속도 차이를 측정하고, 광합성 측정용 챔버를 이용한 광합성량 측정치와의 차이를 비교하여 보다 정밀한 파프리카 생육시의 $CO_2$ 요구도를 알아보고자 본 연구를 수행하였다. 광합성측정장치(LI-6400)를 이용하여 위치 별 파프리카의 광합성속도를 측정하였다. 또한 파프리카 개체의 $CO_2$ 소모량의 정량화를 위하여 환경조절이 가능한 밀폐 챔버를 제작하고, 챔버 내부의 $CO_2$ 농도의 감소량을 측정하여 식물이 이용한 $CO_2$를 정량화하였다. 파프리카의 상위엽과 하위엽에서 광도증가에 따른 광합성 속도 상위엽에서 증가량이 상대적으로 크게 나타났다. 제작한 챔버 내부의 $CO_2$ 농도를 $1,500{\mu}mol{\cdot}mol^{-1}$ 수준으로 설정한 후, 일사량 변화에 따른 챔버 내부의 $CO_2$ 농도를 이용하여 식물체에 의해 소모된 양을 계산하였다. 엽면적이 $7,533.4cm^2$인 파프리카의 경우, 적산광(x)에 따른 $CO_2$ 소모량은 다음과 같은 광합성량 추정 모델식으로 추정되었다: $y=-0.06234+3.671^*x/(2.589+x)$ ($R^2=0.9966^{***}$). $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 광도범위에서 챔버를 이용한 파프리카의 광합성속도는 $3.4{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ 이었고, 상위엽과 하위엽에서의 광합성 측정기에 의한 데이터와 비교하여 중간 값을 나타내었다. 따라서 실제 대규모 농가에서 단위엽의 광합성 측정에 의하여 $CO_2$ 시비량을 계산하면 실제 필요량과 공급량 간에 큰 차이가 발생할 수 있다. 따라서 엽 광합성속도 이외에도 본 연구에서와 같이 챔버를 이용하여 파프리카 식물체 개체가 소비하는 $CO_2$량을 정량화한다면 상업용 온실에 필요한 $CO_2$ 시비량을 정확하게 추정할 수 있다.

Keywords

References

  1. Boyer, J.S. 1970. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 46: 236-239. https://doi.org/10.1104/pp.46.2.236
  2. Bruggink, G.T. and E. Heuvelink. 1987. Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the greenhouse: Effects on relative growth rate, net assimilation rate and leaf area ratio. Sci. Hort. 31:161-174. https://doi.org/10.1016/0304-4238(87)90043-4
  3. Chang, Z.Q., Q. Feng, J.H. Si, Y.H. Su, H.Y. Xi, and J.L. Li. 2009. Analysis of the spatial and temporal changes in soil $CO_2$ flux in alpine meadow of Qilian Mountain. Environ. Geol. 58:483-490. https://doi.org/10.1007/s00254-008-1521-8
  4. Choudhury, B.J. 1987. Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Remote Sens. Environ. 22:209-233. https://doi.org/10.1016/0034-4257(87)90059-9
  5. Cohen, S. and M. Fuchs. 1987. The distribution of leaf area, radiation, photosynthesis and transpiration in a Shamouti orange hedgerow orchard. Part I. Leaf area and radiation. Agr. Forest. Meteorol. 40:123-144. https://doi.org/10.1016/0168-1923(87)90002-5
  6. Flexas, J., A. Diaz-Espejo, J.A. Berry, J. Cifre, J. Galmes, R. Kaidenhoff, H. Medrano, and M. Ribas-Carbo. 2007. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J. Exp. Bot. 58:1533-1543. https://doi.org/10.1093/jxb/erm027
  7. González-Dugo, V., F. Orgaz, and E. Fereres. 2007. Responses of pepper to deficit irrigation for paprika production. Sci. Hort. 114:77-82. https://doi.org/10.1016/j.scienta.2007.05.014
  8. Heissner, A. 1997. $CO_2$ gas exchange of sweet pepper plants in dependence on irradiance, $CO_2$ concentration, air temperature, and vapour pressure deficit: Measurements and model. Gartenbauwissenschaf 62:78-90.
  9. Hogewoning, S.W., G. Trouwborst, J. Harbinson, and W. Van Ieperen. 2010. Light distribution in leaf chambers and its consequences for photosynthesis measurements. Photosynthetica 48:219-226. https://doi.org/10.1007/s11099-010-0027-2
  10. Johnson, I.R. and J.H.M. Thornley. 1984. A model of instantaneous and daily canopy photosynthesis. J. Theoretical Biol. 107:531-545. https://doi.org/10.1016/S0022-5193(84)80131-9
  11. Kaipiainen, E.L. and P. Pelkonen. 2007. Requirements for obtaining maximum indices of photosynthesis and transpiration in attached leaves of willow plants grown in short-rotation forest. Russ. J. Plant Physiol. 54:309-313. https://doi.org/10.1134/S102144370703003X
  12. Kitaya, Y., J. Tsuruyama, T. Shibuya, M. Yoshida, and M. Kiyota. 2003. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 31:177-182. https://doi.org/10.1016/S0273-1177(02)00747-0
  13. Koller, D. and Y. Samish. 1964. A null-point compensating system for simultaneous and continuous measurement of net photosynthesis and transpiration by controlled gas- stream analysis. Botanical Gazette 125:81-88. https://doi.org/10.1086/336250
  14. Mortensen, L.M. 1987. Review: $CO_2$ enrichment in greenhouses. Crop responses. Sci. Hort. 33:1-25. https://doi.org/10.1016/0304-4238(87)90028-8
  15. Nederhoff, E.M. and J.G. Vegter. 1994. Photosynthesis of stands of tomato, cucumber and sweet pepper measured in greenhouses under various $CO_2$-concentrations. Ann. Bot. 73:353-361. https://doi.org/10.1006/anbo.1994.1044
  16. Nguyen, H.T., J.S. Park, T.I. Ahn, J.H. Lee, D.J. Myoung, Y.Y. Cho, and J.E. Son. 2010. Analysis of relationship among growth, environmental factors and transpiration in soilless culture of Paprika plants. Kor. J. Hort. Sci. Technol. 28:59-64.
  17. Ohyama, K., T. Kozai, and H. Toida. 2008. Greenhouse cooling with continuous generation of upward-moving fog for reducing wetting of plant foliage and air temperature fluctuations: A case study. Acta Hort. p. 321-326.
  18. Seemann, J.R., T.D. Sharkey, J. Wang, and C.B. Osmond. 1987. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84:796-802. https://doi.org/10.1104/pp.84.3.796
  19. Shipp, J.L., X. Hao, A.P. Papadopoulos, and M.R. Binns. 1998. Impact of western flower thrips (Thysanoptera: Thripidae) on growth, photosynthesis and productivity of greenhouse sweet pepper. Sci. Hort. 72:87-102. https://doi.org/10.1016/S0304-4238(97)00130-1
  20. Tartachnyk, I.I. and M.M. Blanke. 2007. Photosynthesis and transpiration of tomato and $CO_2$ fluxes in a greenhouse under changing environmental conditions in winter: Research article. Ann. Appl. Biol. 150:149-156. https://doi.org/10.1111/j.1744-7348.2007.00125.x
  21. Thongbai, P., T. Kozai, and K. Ohyama. 2010. $CO_2$ and air circulation effects on photosynthesis and transpiration of tomato seedlings. Sci. Hort. 126:338-344. https://doi.org/10.1016/j.scienta.2010.07.018