DOI QR코드

DOI QR Code

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeong, Ji-Hwan (School of Mechanical Engineering, Pusan National University)
  • Received : 2011.06.14
  • Published : 2011.06.25

Abstract

A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Keywords

References

  1. I.C. Bang, TokyoTech Chronicle, 2008
  2. R. M. Manglik, On the Advancements in Boiling, Two-Phase Flow Heat Transfer, and Interfacial Phenomena, Journal of Heat Transfer, 2006
  3. Incropera and Dewitt, Fundamentals of Heat and Mass Transfer, Four Edition, Wiley
  4. M.M. El-wakil, Nuclear Heat Transport, The American Nuclear Society, 1993
  5. J.C. Vigil and R. J. Pryor, "Accident simulation with TRAC", Los Alamos Science, No.3 1981.
  6. J.J. Rempe, K.Y. Suh, F.B. Cheung, S.B. Kim, "In-vessel retention of molten corium: lessons learned and outstanding issues", Nuclear Technology, Vol. 161, 210, 2008.
  7. I.C. Bang and J.H. Kim, Thermal-Fluid Characterizations of ZnO and SiCnanofluids for advanced nuclear power plants.
  8. S.H. Chang, W.P. Baek, Understanding, predicting, and enhancing critical heat flux, in: The 10th International Topical Meeting on Nuclear Reactor Thermal Hydrualics (NURETH-10), Seoul, Korea, October (5-9) 2003.
  9. C.H. Li, et al. Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures, Int. J of Heat and Mass Transfer 54, 3146-3155, 2011 https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.062
  10. http://en.wikipedia.org/wiki/Nanotechnology
  11. W.Fritz, 1935, "Berechnung des Maximal Volume von Dampfblasen", Phys. Z., 36, 379.
  12. N. Zuber, 1963, "Nucleate boiling - the region of isolated bubbles - similarity with natural convection", Int. J. Heat Mass Transfer, 6, 53. https://doi.org/10.1016/0017-9310(63)90029-2
  13. C.H. Wang and V. K. Dhir, 1993, "Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface", J. Heat Transfer, vol. 115, 659-669. https://doi.org/10.1115/1.2910737
  14. R.N.Wenzel, 1949, "Surface roughness and contact angle (letter)", J. Physical Colloid Chemistry, 53, 9, 1466. https://doi.org/10.1021/j150474a015
  15. S. S.Kutateladze, and A. I. Leont'ev, 1964, Turbulent boundary layers in compressible gases, D. B. Spalding, Trans., Academic Press, New York.
  16. N. Zuber, 1959, Hydrodynamic Aspects of Boiling Heat Transfer, AECU-4439.
  17. T.G. Theofanous et al., 2002, "The boiling crisis phenomenon. Part II: dryout dynamics and burnout", Experimental Thermal and Fluid Science, 26, 793-810. https://doi.org/10.1016/S0894-1777(02)00193-0
  18. Y. Haramura and Y. Katto, 1983, "A new hydrodynamic model of CHF applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids", Int. J. of Heat and Mass Transfer, 26, 389-399. https://doi.org/10.1016/0017-9310(83)90043-1
  19. P. Sadasivan, P. R. Chappidi, C. Unal, and R. A. Nelson, 1992, "Possible Mechanisms of Macrolayer Formation", Pool and External Flow Boiling (ASME 1992) p. 135.
  20. T.G. Theofanous and T. N. Dinh, 2006, "High heat flux boiling and burnout as microphysical phenomena: mounting evidence and opportunities", Multiphase Science and Technology, Vol. 18, No. 1, pp. 1-26. https://doi.org/10.1615/MultScienTechn.v18.i1.10
  21. W. Rosenhow and P. Griffith, 1956, "Correlation of Maximum Heat Flux Data for Boiling of Saturated Liquids", Chem. Eng. Prog. Symp. Ser. 52, 18, 47-49.
  22. N. Kolev, 2002, "How accurately can we predict nucleate boiling?", in Multiphase Flow Dynamics 2, Springer.
  23. S.G. Kandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Transfer 123 (2001) 1071-1079. https://doi.org/10.1115/1.1409265
  24. S.G. Liter and M. Kavinay, "Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment," Int. J. Heat and Mass Transfer, vol. 44, pp. 4287-4311, 2001. https://doi.org/10.1016/S0017-9310(01)00084-9
  25. S. D. Park, S. W. Lee, S. Kang, I. C. Bang, J. H. Kim, H. S. Shin, D. W. Lee, and D. W. Lee, Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux, Appl. Phys. Lett. 97, 023103 (2010) https://doi.org/10.1063/1.3459971
  26. I.C. Bang, J. Buongiorno, L.W. Hu, H. Wang, Measurement of key pool boiling parameters in nanofluids for nuclear applications, JSME Journal of Power and Energy Systems, Vol. 2, No. 1, (2008)
  27. R. Ahmed, Coolants for nuclear reactors, available on the Internet at http://www.nuc.berkeley.edu/thyd/ne161/rahmed/coolants.html
  28. R. Chen, Nanowires for enhanced boiling heat transfer, nano letters, 2009, vol. 9, No. 2, 548-553. https://doi.org/10.1021/nl8026857
  29. C. Li, Zuankai Wang1, Pei-I Wang, YoavPeles, Nikhil Koratkar, G. P. Peterson, Nanostructured Copper Interfaces for Enhanced Boiling, Small, Volume 4, Issue 8, pages 1084-1088, August 2008 https://doi.org/10.1002/smll.200700991
  30. M. Sesen et al. "Compact nanostructure integrated pool boiler for microscale cooling applications", Micro &nano Letters, 2010, Vol. 5, 203-206 https://doi.org/10.1049/mnl.2010.0070
  31. H.S. Ahn et al. "Pool Boiling Experiments on a Nano- Structured Surface", IEEE Transactions on components and packaging technologies, vol. 32, No. 1, 2009. https://doi.org/10.1109/TCAPT.2009.2013980
  32. T.J. Hendricksa, Shankar Krishnana, ChanghoChoib, Chih-Hung Changb and Brian Paulc, Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper, International Journal of Heat and Mass Transfer, Volume 53, Issues 15-16, July 2010, 3357-3365 https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.025
  33. H.S. Ahn, et al. "Pool boiling CHF enhancement by micro/nanoscale modification of Zircaloy-4 surface," Nuclear Engineering and Design, Vol. 240, Issue 10, pp. 3350-3360. (2010) https://doi.org/10.1016/j.nucengdes.2010.07.006
  34. E. Forrest et al. "Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings", Int. Journal of Heat and Mass Transfer, (2010), vol. 53, 58-67 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.008
  35. S. Jeon, P. Roy, N. K. Anand, D. Banerjee, "Investigation of Flow Boiling on Nanostructured Surfaces, 2010 14th International Heat Transfer Conference (IHTC14), August 8-13, 2010, Washington, DC, USA, Paper no. IHTC14-22926 pp. 577-582 doi:10.1115/I HTC14-22926
  36. S.U.S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles", Developments and Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66, 1995
  37. J.F. Hoegerton, and R.C. Grass, Reactor Handbook, Vol. 3, Engineering, Selected Reference Material, U.S. Atomic Energy Commission, August 1955.
  38. A.A. Taylor, P.E. Phelan, Pool Boiling of nanofluids: Comprehensive review of existing data and limited new data, Int .J. of Heat and Mass Transfer 52, 5339-5347, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.040
  39. S.M. S. Murshed, C.A. N. D. Castro, M.J.V. Lourenco, M.L.M. Lopes, F.J.V. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews 15, 2342-2354, 2011. https://doi.org/10.1016/j.rser.2011.02.016
  40. J. Barber, D. Brutin and L. Tadrist, A review on boiling heat transfer enhancement with nanofluids, Nanoscale Research Letters, 2011.
  41. S.K. Das, N. Putra and W. Roetzel, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer 46 (2003), pp. 851-862. https://doi.org/10.1016/S0017-9310(02)00348-4
  42. I.C. Bang and S.H. Chang, Boiling heat transfer performance and phenomena of $Al_2O_3$-water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer Volume 48, Issue 12, June 2005, Pages 2407-2419 https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  43. S. M You., J. Kim, K. H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, 83, 16, 3374-3376. (2003) https://doi.org/10.1063/1.1619206
  44. P. Vassallo, R. Kumar, S. D'Amico, "Pool boiling heat transfer experiments in silica-water nano-fluids", Int. J. of Heat and Mass Transfer, 47, 407-411. (2004) https://doi.org/10.1016/S0017-9310(03)00361-2
  45. D. Wen and Y.Ding, Experimental investigation into the pool boiling heat transfer of aqueous based c-alumina nanofluids, Journal of Nanoparticle Research (2005) 7: 265-274 https://doi.org/10.1007/s11051-005-3478-9
  46. K. J.Park, D.Jung, Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int J Heat Mass Transfer (2007) 50:4499-4502. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.012
  47. A.Suriyawong, S.Wongwises, Nucleate pool boiling heat transfer characteristics of $TiO_2$-water nanofluids at very low concentrations. ExpTherm Fluid Sci, 34(8):992-999. (2010) https://doi.org/10.1016/j.expthermflusci.2010.03.002
  48. Z-H. Liu,X-F. Yang, J-G Xiong, Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures. Int J ThermSci, 49(7):1156-1164. (2010) https://doi.org/10.1016/j.ijthermalsci.2010.01.023
  49. D. Milanova and R. Kumar, Role of ions in pool boiling heat transfer of pure and silica nanofluids, Appl. Phys. Lett. 87, 233107, (2001).
  50. S.J. Kim, I. C.Bang, J.Buongiorno, L.W. Hu, "Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids", Applied Physics Letters 89, 153107 (2006) https://doi.org/10.1063/1.2360892
  51. H.D. Kim and M. H. Kim, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Appl. Phys. Lett. 91, 014104 (2007) https://doi.org/10.1063/1.2754644
  52. G.S. Hwang and M. Kavinay, "Critical heat flux in thin, uniform particle coatings," Int. J. Heat and Mass Transfer, vol. 49, pp. 844-849, (2006) https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.020
  53. S.J. Kim, T. McKrell, J. Buongiorno, and L.-W. Hu, "Alumina Nanoparticles enhance the flow boiling critical heat flux of water at low pressure", Journal of Heat Transfesr, vol 130, 044501, (2008) https://doi.org/10.1115/1.2818787
  54. S.J. Kim, T. McKrell, J. Buongiorno, and L.-W. Hu, Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids, J. Heat Transfer -- April 2009 -- Volume 131, Issue 4, 043204 https://doi.org/10.1115/1.3072924
  55. S.J. Kim, T. McKrell, J. Buongiorno, and L.-W. Hu, Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nuclear Engineering and Design 240 1186-1194 (2010) https://doi.org/10.1016/j.nucengdes.2010.01.020
  56. B.Truong, J.Buongiorno L.Hu, T.McKrell, "Alumina Nanoparticle Pre-Coated Tubing Enhancing Subcooled Flow Boiling Critical Heat Flux", ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1, Paper no. MNHMT 2009-18364 pp. 533-539
  57. K. Henderson, Y. Park, L. Liu, Anthony M. Jacobi, Flowboiling heat transfer of R-134a-based nanofluids in a horizontal tube, International Journal of Heat and Mass Transfer 53 944-951 (2010) https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.026
  58. H.S. Ahn, H. Kim, H. Jo, S. Kang, W. Chang, M. H. Kim, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, International Journal of Multiphase Flow 36 375-384 (2010) https://doi.org/10.1016/j.ijmultiphaseflow.2010.01.004
  59. T.I. Kim, W. J. Chang, S. H. Chang, Flow boiling CHF enhancement using $Al_2O_3$ nanofluid and an $Al_2O_3$ nanoparticle deposited tube, Int. J. of Heat and Mass Transfer 54, 2021-2025, (2011) https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.029
  60. S.Vafaei and D. Wen, Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel, J. Heat Transfer, Vol. 132, Issue 10, 102404 (2010) https://doi.org/10.1115/1.4001629
  61. S.Vafaei and D. Wen, Flow boiling heat transfer of alumina nanofluids in singlemicrochannels and the roles of nanoparticles, J Nanopart Res 13:1063-1073. (2011) https://doi.org/10.1007/s11051-010-0095-z
  62. H.S. Ahn, S. H. Kang, H. Jo, H. Kim, M. H. Kim, Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall, Int. J. of Multiphase Flow 37, 215-228, (2011) https://doi.org/10.1016/j.ijmultiphaseflow.2010.09.005
  63. S.W. Lee, S.D. Park, S. Kang, S.M. Kim, D.W. Lee, I.C. Bang, Investigation of critical heat flux enhancement in flow boiling using nanofluids, Transactions of the Korean Nuclear Society Spring Meeting, Taebaek, Korea, May, (2011)
  64. H.S.Park, D.Shiferaw, B.R.Sehgal, D.K.Kim, M.Muhammed, Film boiling heat transfer on a high temperature sphere in nanofluid. In: Proceedings of 2004 ASME Heat Transfer/ Fluids Engineering Summer Conference, Charlotte, NC, pp. 1-8. (2004)
  65. H.S. Xue, J.R. Fan, R.H.Hong, Y.C.Hu, Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique. Appl. Phys. Lett. 90, 184107. (2007) https://doi.org/10.1063/1.2736653
  66. H. Lotfi, M.B. Shafii, Boiling heat transfer on a high temperature silver sphere in nanofluids, Int. J. Thermal Sci. 48 2215-2220. (2009) https://doi.org/10.1016/j.ijthermalsci.2009.04.009
  67. I.C. Bang, Effects of nanoparticles on single rod quenching, in: Proceedings of the Sixth Japan-Korea Symposium on Nuclear Thermal Hydraulic and Safety, Okinawa, Japan, (2008)
  68. H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, L.W. Hu, On the quenching of steel and zircaloy spheres in waterbased nanofluids with alumina, silica and diamond nanoparticles, International Journal of Multiphase Flow 35 427-438. (2009) https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.004
  69. H. Kim, J. Buongiorno, L.W. Hu, T. McKrell, Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids, Int. J. Heat Mass Transfer 53 1542-1553. (2010) https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.029
  70. S. Chun, I. C. Bang, Y. Choo, C. Song, Heat transfer characteristics of Si and SiCnanofluids during a rapid quenching and nanoparticles deposition effects, International Journal of Heat and Mass Transfer 54 1217-1223 (2011) https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.029
  71. A.Bolukbasi, D.Ciloglu, "Pool boiling heat transfer characteristics of vertical cylinder quenched by $SiO_2$-water nanofluids", International Journal of Thermal Sciences 50 1013-1021 (2011) https://doi.org/10.1016/j.ijthermalsci.2011.01.011
  72. D.Ciloglu, A.Bolukbasi, "The quenching behavior of aqueous nanofluids around rods with high temperature", doi:10.1016/j.nucengdes.2011.04.023 (2011)
  73. I.C. Bang, Direct observation of dryout processes of thin liquid films and $Al_2O_3$ nanofluids performance in boiling crisis, KAIST Ph.D Thesis, (2004)
  74. J. Buongiorno and L.-W. Hu, "Nanofluid Coolants for Advanced Nuclear Power Plants", Paper 5705, Proceedings of ICAPP '05, Seoul, May 15-19. (2005)
  75. K. Hadad, A. Hajizadeh, K. Jafarpour, B.D. Ganapol, Neutronic study of nanofluids application to VVER-1000, Annals of Nuclear Energy 37, 1447-1455, (2010) https://doi.org/10.1016/j.anucene.2010.06.020
  76. J. Buongiorno, L.W. Hu, G. Apostolakis, R. Hannink, T. Jucas, A. Chupin, A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nuclear Engineering and Design 239, 941-948, (2009) https://doi.org/10.1016/j.nucengdes.2008.06.017
  77. I.C. Bang, G. Heo, Y.H. Jeong, S. Heo, An axiomatic design approach of nanofluid-engineered nuclear safety features for generation III+ Reactors, Nuclear Engineering and Technology, Vol. 41, No.9, 1157-1170, (2009) https://doi.org/10.5516/NET.2009.41.9.1157
  78. M. Kang, C. Jee, S. Park, I.C. Bang, G. Heo, Design process of the nanofluid injection mechanism in nuclear power plants, Nanoscale Research Letters, 6:363 (2011) https://doi.org/10.1186/1556-276X-6-363
  79. W.Nusselt, "Die oberflachenkondensation des wasserdampfes," Z VereinesDeutchIng, 60(27), pp.541-546, (1916).
  80. Q. Zhao, D. C. Zhang, J. F. Lin, G. M. Wang, "Dropwise condensation on L-B film surface," Chem. Eng. Process, 35, pp. 473-477 (1996). https://doi.org/10.1016/S0255-2701(96)04158-X
  81. K. B. Blodgett, "Films built up by depositing successive mono- molecular layers on a solid surface," J. Am. Chem. Soc, 57, pp. 1007-1022 (1935). https://doi.org/10.1021/ja01309a011
  82. G. Koch, K. Kraft, A. Leipertz, "Parameter study on the performance of dropwise condensation," Rev. Gen. Therm., 37, pp. 539-548, 1998. https://doi.org/10.1016/S0035-3159(98)80032-9
  83. M.H. Rausch, A.P. Froba and A. Leipertz, "Dropwise condensation heat transfer on ion implanted aluminum surfaces," Int. J. Heat Mass Transfer, 51, pp. 1061-1070 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.047
  84. K. Watanabe, "Fluid frictions of shark skin and lotus leaf - How does the drag reduction occur?" J. Jap. Soc. Tribol., 45, pp. 354-359 (2000).
  85. R.P. Andrew, C.R. Lawrence, "Water capture by a desert beetle," Nature, 414, pp. 33-34, (2001). https://doi.org/10.1038/35102108
  86. C. Neinhuis, W. Barthlott, "Characterization and distribution of water-repellent, self-cleaning plant surfaces", Ann. Botany, 79(6): 667-677, (1997). https://doi.org/10.1006/anbo.1997.0400
  87. M. Callies, D. Quere, "On water repellency," Soft Matter, 1, pp. 55-61,(2005). https://doi.org/10.1039/b501657f
  88. C. V. Boys, "Soap bubbles and the forces which mould them", Society for Promoting Christian Knowledge, London, 1902.
  89. F.M. Fowkes, "Contact angle, wettability, and adhesion," Advances in chemistry series, 43, American Chemical Society, Washington, 1964.
  90. P.G. De Gennes, "Wetting: statics and dynamics," Rev Mod Physics, 57, pp. 827-863 (1985). https://doi.org/10.1103/RevModPhys.57.827
  91. A.W. Adamson, "Physical chemistry of surfaces" Wiley, London, 1990.
  92. W. Barthlott, C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, 202, pp. 1-8, (1997). https://doi.org/10.1007/s004250050096
  93. T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, "Superwater-repellent fractal surfaces," Langmuir, 12, pp. 2125-2127 (1996). https://doi.org/10.1021/la950418o
  94. J. Bico, C. Marzolin, D. Quere, "Pearl drops," Europhysics Letters, 47(2), pp.220-226 (1999). https://doi.org/10.1209/epl/i1999-00548-y
  95. C.H. Chen, Q. Cai, C. Tsai, C.L. Chen, "Dropwise condensation on superhydrophobic surfaces with two-tier roughness", Applied Physics Letter, 90, 173108, (2007). https://doi.org/10.1063/1.2731434
  96. L. Zhang, Z. Zhou, B. Cheng, J.M. DeSimone, E.T. Samulski, "Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography," Langmuir, 22, pp.8576-8580 (2006). https://doi.org/10.1021/la061400o
  97. A.V. Adamson, "Physical chemistry of surfaces", Wiley, 1990.
  98. T. Young , "An essay on the cohesion of fluids," Phil. Trans. R. Soc. Lond., 95, pp. 65-87, (1805). https://doi.org/10.1098/rstl.1805.0005
  99. R.N. Wenzel, "Resistance of solid surfaces to wetting by water", Industrial and Engineering Chemistry, 28, pp. 988-994 (1936). https://doi.org/10.1021/ie50320a024
  100. R.N. Wenzel, "Surface roughness and contact angle," Journal of Physical Colloid Chemistry, 53(9), pp. 1466-1467, (1949). https://doi.org/10.1021/j150474a015
  101. A.B.D. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday Society, 40, pp. 546-551, (1944). https://doi.org/10.1039/tf9444000546
  102. D. Camuffo, "Condensation-evaporation cycles in pore and capillary systems according to the Kelvin model", Water, Air and Soil Pollution, 21, pp. 151-159 (1984). https://doi.org/10.1007/BF00163620
  103. J.W. Rose, and L.R. Glicksman, "Dropwise condensation the distribution of drop sizes" Int. J. Heat Mass Transfer, 16, pp. 411-425 (1973). https://doi.org/10.1016/0017-9310(73)90068-9
  104. E.J. Le Fevre, J.W. Rose, "A theory of heat transfer by dropwise condensation", Proceedings of 3rd International Heat Transfer Conference, 2, Chicago, pp. 362-375, 1966.
  105. Y.J. Song, D.Q. Xu, J.F. Lin and S.X. Tsian, "A study on the mechanism of dropwise condensation," Int. J. Heat Mass Transfer, 34, pp. 2827-2832 (1991). https://doi.org/10.1016/0017-9310(91)90243-8
  106. J. W. Rose, "Dropwise condensation Theory and experiment:: a review", Proc. Instn. Mech. Engrs., 216, pp. 115-128 (2002).
  107. P.J. Marto, D.J. Looney, J.W. Rose, A.S. Wanniarachchi, "Evaluation of organic coatings for the promotion of dropwise condensation of steam," International Journal of Heat and Mass Transfer, 29(8), pp. 1109-1117 (1986). https://doi.org/10.1016/0017-9310(86)90142-0
  108. S. Vemuri, K.J. Kim, B.D. Wood, S. Govindaraju, T.W. Bell "Long term testing for dropwise condensation using selfassembled monolayer coatings of n-octadecylmercaptan" Applied Thermal Engineering, 26(4), pp. 421-429 (2006). https://doi.org/10.1016/j.applthermaleng.2005.05.022
  109. X. Ma, J. Chen, D. Xu, J. Lin, C. Ren, Z. Long, "Influence of processing conditions of polymer film on dropwise condensation heat transfer" Int. J. Heat Mass Transfer, 45(16), pp. 3405-3411 (2002). https://doi.org/10.1016/S0017-9310(02)00059-5
  110. Q. Zhao, D.C. Zhang, J.F. Lin, "Surface materials with dropwise condensation made by ion implantation technology", International Journal of Heat and Mass Transfer, 34(11), pp. 2833-2835, (1991). https://doi.org/10.1016/0017-9310(91)90244-9
  111. A.B. Kananeh, M.H. Rausch, A.P. Fröba, A. Leipertz, "Experimental study of dropwise condensation on plasmaion implanted stainless steel tubes", International Journal of Heat and Mass Transfer, 49, pp. 5018-5026 (2006) https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.039
  112. A.B. Kananeh, M.H. Rausch, A. Leipertz, A.P. Fröba, "Dropwise condensation heat transfer on plasma-ionimplanted small horizontal tube bundles," Heat Transfer Engineering, 31(10), pp. 821-828 (2010). https://doi.org/10.1080/01457630903547545
  113. S. Wang, Y. Zhang, N. Abidi, L. Cabrales, "Wettability and surface free energy of graphene films", Langmuir, 25(18), pp. 11078-11081, (2009). https://doi.org/10.1021/la901402f
  114. J. Rafiee, M.A. Rafiee, Z. Yu, N. Koratkar, "Superhydropphobic to superhydrophilic wetting control in graphene films", Advanced Materials, 22, pp. 2151-2154, (2010). https://doi.org/10.1002/adma.200903696
  115. B. Bhushan, Y.C. Jung, "Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction," Progress in Materials Science, 56(1), pp. 1-108 (2011). https://doi.org/10.1016/j.pmatsci.2010.04.003
  116. J.L. Zhang, J.A. Li, Y.C. Han, "Superhydrophobic PTFE Surfaces by Extension" Macromol Rapid Commun, 25, pp. 1105-1108 (2004). https://doi.org/10.1002/marc.200400065
  117. J. Shiu, C. Kuo, P. Chen, C. Mou, "Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography" Chem Mater, 16, pp. 561-564 (2004). https://doi.org/10.1021/cm034696h
  118. L. Xu, W. Chen, A. Mulchandani, Y. Yan, "Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic" AngewChemInt Ed, 44, pp. 6009-6012 (2005).
  119. M. T. Khorasani, H. Mirzadeh, Z. Kermani, "Wettability of Porous Polydimethylsiloxane Surface : Morphology Study" Appl Surf Sci, 242, pp. 339-345 (2005). https://doi.org/10.1016/j.apsusc.2004.08.035
  120. L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S. F. Yu, "Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film" J PhysChem, 109, pp. 7746-7748 (2005).
  121. Y.C. Jung, B. Bhushan, "Mechanically Durable CNTComposite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag", ACS Nano, 3, pp. 4155-4163 (2009). https://doi.org/10.1021/nn901509r
  122. K.K.S. Lau, J. Bico, K.B.K. Teo, "Superhydrophobic carbon nanotube Forests" Nano Lett, 3, pp. 1701-1705 (2003). https://doi.org/10.1021/nl034704t
  123. B. Bhushan, "Biomimetics: lessons from nature - an overview", Philosophical Transactions of the Royal Society A, 367, 1445-1486 (2009). https://doi.org/10.1098/rsta.2009.0011
  124. W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, "A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on nonwetting textured surfaces", Journal of Colloid and Interface Science, 339, pp. 208-216 (2009). https://doi.org/10.1016/j.jcis.2009.07.027
  125. M. Nosonovsky, and B. Bhushan, "Patterned nonadhesive surfaces: superhydrophobic and wetting regime transitions" Langmuir, 24, pp. 1525-1533 (2008). https://doi.org/10.1021/la702239w
  126. Y.C. Jung, B. Bhushan, "Wetting transition of water droplets on superhydrophobic patterned surfaces", ScriptaMaterialia, 57, pp. 1057-1060, (2007). https://doi.org/10.1016/j.scriptamat.2007.09.004
  127. Y. T. Cheng, D. E. Rodak, A. Angelopoulos, T. Gacek, "Microscopic observations of condensation of water on lotus leaves" Appl. Phys. Lett, 87, 194112 (2005). https://doi.org/10.1063/1.2130392
  128. Y.T. Cheng, and D.E. Rodak, "Is the lotus leaf superhydrophobic?," Appl. phys. Lett., 86, 144101 (2005). https://doi.org/10.1063/1.1895487
  129. Y. Zheng, D. Han, J. Zhai, L. Jiang, "In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation", Applied Physics Letter, 92, 084160, (2008).
  130. K.A. Wier, and T.J. McCarthy, "Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant," Langmuir, 22, pp. 2433-2436 (2006). https://doi.org/10.1021/la0525877
  131. K.K. Varanasi, M. Hsu, N. Bhate, W. Yang, and T. Deng, "Spatial control in the heterogeneous nucleation of water" Appl. Phys. Lett., 95, 094101 (2009). https://doi.org/10.1063/1.3200951
  132. J.B. Boreyko, and C. H. Chen, "Self-propelled DropwiseCondesate on Superhydrophobic Surfaces" Phys. Rev. Lett., 103, 184501 (2009). https://doi.org/10.1103/PhysRevLett.103.184501
  133. C. Dietz, K. Rykaczewski, A. G. Fedorov, and Y. Joshi, "Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation" Appl. Phys. Lett., 97, 033104 (2010). https://doi.org/10.1063/1.3460275
  134. J. W. Rose, "Condensation heat transfer fundamentals" Chemical Engineering Research and Design, 76, pp.143-152 (1998). https://doi.org/10.1205/026387698524712
  135. Schmidt, E., Schurig, W., Sellschop, W., Versucheuber die Kondensation von Wasserdampf in Film- und Tropfenform, Tech MechThermodynamik (ForschungIng Wes), 1, pp.52-63 (1930).
  136. X. Ma and J. W. Rose, "Advances in dropwise condensation heat transfer: Chinese research," Chem. Eng. J., 78, pp. 87-93 (2000). https://doi.org/10.1016/S1385-8947(00)00155-8
  137. B. J. Chung, S. Kim, and M. C. Kim, "Experimental comparison of film-wise and drop-wise condensation of steam on vertical flat plates with the presence of air", Int. Comm. Heat Mass Transfer, 31, pp. 1067-1074 (2004). https://doi.org/10.1016/j.icheatmasstransfer.2004.08.004
  138. B. J. Chung, and S. Kim, "Film condensations on horizontal and slightly inclined upward and downward facing plates" Heat Transfer Engineering, 29, pp. 936-941 (2008). https://doi.org/10.1080/01457630802186023
  139. B.J Chung, M.C. Kim, M. Ahmadinejad, "Film-wise and Drop-wise condensation of steam on short inclined plates", Journal of Mechanical Science and Technology, 22, pp. 127-133 (2008). https://doi.org/10.1007/s12206-007-1015-8
  140. S. Vemuri, and K. J. Kim, "An experimental and theoretical study on the concept of dropwise condensation" Int. J. Heat Mass Transfer, 49, pp. 649-657 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.016
  141. Junjie Yan, Yeusen Yang, Shenhua Hu, Kejian Zhen, and Jiping Liu, "Effects of vapor pressure/velocity and concentration on condensation heat transfer for steamethanol vapor mixture" Int. J. Heat Mass Transfer, 44, pp. 51-60 (2007). https://doi.org/10.1007/s00231-006-0216-5

Cited by

  1. Influence of Substrate Elasticity on Droplet Impact Dynamics vol.29, pp.14, 2013, https://doi.org/10.1021/la304767t
  2. Observation of water condensate on hydrophobic micro textured surfaces vol.49, pp.7, 2013, https://doi.org/10.1007/s00231-013-1141-z
  3. Cavitation on Deterministically Nanostructured Surfaces in Contact with an Aqueous Phase: A Small-Angle Neutron Scattering Study vol.30, pp.33, 2014, https://doi.org/10.1021/la500963q
  4. The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation vol.51, pp.4, 2015, https://doi.org/10.1007/s00231-014-1424-z
  5. Effects of heat flux on dropwise condensation on a superhydrophobic surface vol.30, pp.5, 2016, https://doi.org/10.1007/s12206-016-0421-1
  6. Effects of Femtosecond Laser Surface Processed Nanoparticle Layers on Pool Boiling Heat Transfer Performance vol.10, pp.3, 2018, https://doi.org/10.1115/1.4038763