DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Hexane Fraction from White Rose Flower Extracts via Inhibition of Inflammatory Repertoires

  • Lee, Hwa-Jeong (Department of Beauty Design, Dongshin University) ;
  • Kim, Han-Seok (Department of Cosmeteology, Chung Am University) ;
  • Kim, Seung-Tae (Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University) ;
  • Park, Dong-Sun (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Hong, Jin-Tae (College of Pharmacy, Chungbuk National University) ;
  • Kim, Yun-Bae (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Joo, Seong-Soo (Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University)
  • Received : 2011.05.25
  • Accepted : 2011.06.29
  • Published : 2011.07.31

Abstract

In this study, we determined the anti-inflammatory activity and mechanism of action of a hexane fraction (hWRF) obtained from white Rosa hybrida flowers by employing various assays such as quantitative real-time PCR, Western blotting, and Electrophoretic-Mobility Shift Assay (EMSA). The results revealed that the hWRF had excellent anti-inflammatory potency by reducing inflammatory repertoires, such as inducible nitric oxide synthase (iNOS), interleukin-$1{\beta}$, and cyclooxygenase-2 (COX-2) in RAW264.7 cells when stimulated with lipopolysaccharide (LPS), a pro-inflammatory mediator. The reduction of nitric oxide (NO) release from RAW 264.7 cells supported the anti-inflammatory effect of hWRF. Interestingly, hWRF effectively inhibited LPS-mediated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) p65 subunit translocation into the nucleus and extracellular signal-regulated kinase (ERK)1/2 phosphorylation, suggesting that hWRF anti-inflammatory activity may be based on inhibition of the NF-${\kappa}B$ and MAPK pathways. Based on the findings described in this study, hWRF holds promise for use as a potential anti-inflammatory agent for either therapeutic or functional adjuvant purposes.

Keywords

References

  1. Adams, D. O. and Hamilton, T. A. (1984) The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283-318. https://doi.org/10.1146/annurev.iy.02.040184.001435
  2. Aravindaram, K. and Yang, N. S. (2010) Anti-infl ammatory plant natural products for cancer therapy. Planta Med. 76, 1103-1117. https://doi.org/10.1055/s-0030-1249859
  3. Argolo, A. C. C., Sant'Ana, A. E. G., Pletsch, M. and Coelho, L. C. B. B.(2004) Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresour. Technol. 95, 229-233. https://doi.org/10.1016/j.biortech.2003.12.014
  4. Bravo, L. (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional signifi cance. Nutr. Rev. 56, 317-333.
  5. Cho, E. J., Yokozawa, T., Rhyu, D. Y., Kim, S. L., Shibahara, N. and Park, J. C. (2003). Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine 10, 544-551. https://doi.org/10.1078/094471103322331520
  6. De Mjia, E. G., Ramirez-Mares, M. V. and Puangpraphant S. (2009) Bioactive components of tea: cancer, infl ammation and behavior. Brain Behav. Immun. 23, 721-731. https://doi.org/10.1016/j.bbi.2009.02.013
  7. Dixon, R. A. (2001) Natural products and plant disease resistance. Nature 411, 843-847. https://doi.org/10.1038/35081178
  8. Harborne, J. B. (2001) Twenty-five years of ecology. Nat. Prod. Rep. 18, 361-379. https://doi.org/10.1039/b005311m
  9. Hotta, H., Nagano, S., Ueda, M., Tsujino, Y., Koyama, J. and Osakai, T. (2002) Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim. Biophys. Acta 1572, 123-132. https://doi.org/10.1016/S0304-4165(02)00285-4
  10. Gosslau, A., En Jao, D. L., Huang, M. T., Ho, C. T., Evans, D., Rawson, N. E. and Chen, K. Y. (2011a) Effects of the black tea polyphenol theafl avin-2 on apoptotic and infl ammatory pathways in vitro and in vivo. Food Res. 55, 198-208.
  11. Gosslau, A., Li, S., Ho, C. T., Chen, K. Y. and Rawson, N. E. (2011b) The importance of natural product characterization in studies of their anti-infl ammatory activity. Mol. Nutr. Food Res. 55, 74-82. https://doi.org/10.1002/mnfr.201000455
  12. Jang, H. W., Ka, M. H. and Lee K. G. (2008) Antioxidant activity and characterization of volatile extracts of Capsicum annuum L. and Allium spp. Flavour. Fragr. J. 23, 178-184. https://doi.org/10.1002/ffj.1872
  13. Jeon, J. H., Kwon, S. C., Park, D. S., Shin, S., Jeong, J. H., Park, S. Y., Hwang, S. Y., Kim, Y. B. and Joo, S. S. (2009) Anti-allergic effects of white rose pertal extract and anti-atopic properties of its hexae fraction. Arch. Pharm. Res. 32, 823-830. https://doi.org/10.1007/s12272-009-1602-6
  14. Joo, S. S., Kim, Y. B. and Lee, D. I. (2010) Antimicrobial and antioxidant properties of secondary metabolites from white rose flower. Plant Pathol. J. 26, 57-62. https://doi.org/10.5423/PPJ.2010.26.1.057
  15. Karin, M., Yamamoto, Y. and Wang, Q. M. (2004) The IKK NFkappa B system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17-26. https://doi.org/10.1038/nrd1279
  16. Lee, J. K. (2011) Anti-infl ammatory effects of eriodictyol in lipopolysaccharide- stimulated Raw264.7 murine macrophages. Arch. Pharm. Res. 34, 671-679. https://doi.org/10.1007/s12272-011-0418-3
  17. Nagano, H., Shindo, M., Sakon, S., Nisinaka, S., Mihara, M., Yagita, H. and Okumura, K. (1998) Differential regulation of IkappaB kinase alpha and beta by two upstream kinases NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Si USA 95, 3537-3542. https://doi.org/10.1073/pnas.95.7.3537
  18. Ng, T. B., Gao, W., Li, L., Niu, S. M., Zhao, L., Liu, J., Shi, L. S., Fu, M., and Liu, F. (2005) Rose (Rosa rugosa)-fl ower extract increases the activities of antioxidant enzymes and their gene expression and reduces lipid peroxidation. Biochem. Cell Biol. 83, 78-85. https://doi.org/10.1139/o04-100
  19. Park, D. S., Jeon, J. H., Kwon, S. C., Shin, S., Jang, J. Y., Jeong, H. S., Lee, D. I., Kim, Y. B. and Joo SS. (2009) Antioxidative activities of white rose flower extract and pharmaceutical advantages. Biochem. Cell Biol. 87, 943-952. https://doi.org/10.1139/O09-065
  20. Sautebin, L. (2000) Prostaglandins and nitric oxide as molecular targets for anti-infl ammatory therapy. Fitoterapia 71, S48-57. https://doi.org/10.1016/S0367-326X(00)00181-7
  21. Surh, Y. J., Na, H. K., Lee, J. Y. and Keum, Y. S. (2001) Molecular mechanisms underlying anti-tumor promoting activities of heatprocessed Panax ginseng C.A. Meyer. J. Korean Med. Sci. 16, S38-41. https://doi.org/10.3346/jkms.2001.16.S.S38
  22. Warner, R. L., Paine, R. 3rd., Christensen, P. J., Marletta, M. A., Richards, M. K., Wilcoxen, S. E. and Ward, P. A. (1995) Lung sources and cytokine requirements for in vivo expression of inducible nitric oxide synthase. Am. J. Respir. Cell Mol. Biol. 12, 649-661. https://doi.org/10.1165/ajrcmb.12.6.7539274
  23. Xie, Q. W., Kashiwabara, Y. and Nathan, C. (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705-4708.

Cited by

  1. Extraction conditions of white rose petals for the inhibition of enzymes related to skin aging vol.31, pp.3, 2015, https://doi.org/10.5625/lar.2015.31.3.148
  2. Anti-inflammatory Activities of Methanolic Extracts from Different Rose Cultivars vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.551
  3. Protective Mechanism of Anethole on Hepatic Ischemia/Reperfusion Injury in Mice vol.76, pp.9, 2013, https://doi.org/10.1021/np4004323
  4. Neuroprotective Effects of a Butanol Fraction of Rosa hybrida Petals in a Middle Cerebral Artery Occlusion Model vol.21, pp.6, 2013, https://doi.org/10.4062/biomolther.2013.067
  5. Antimicrobial activities of ethanol and butanol fractions of white rose petal extract vol.76, 2016, https://doi.org/10.1016/j.yrtph.2016.01.011
  6. Rosa hybrida extract suppresses vascular smooth muscle cell responses by the targeting of signaling pathways, cell cycle regulation and matrix metalloproteinase-9 expression vol.37, pp.4, 2016, https://doi.org/10.3892/ijmm.2016.2504
  7. 붉은 장미꽃잎 에탄올 추출물의 활성 분획물 분석 및 항염증 활성 효과 vol.6, pp.2, 2020, https://doi.org/10.17703/jcct.2020.6.2.543