DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of 1- and 2-Naphthyl Chloroformates Using the Extended Grunwald-Winstein Equation

  • Moon, Doo-Hwan (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Seong, Mi-Hye (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kyong, Jin-Burm (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Ye-Lin (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Yong-Woo (Department of Chemistry and Applied Chemistry, Hanyang University)
  • Received : 2011.05.07
  • Accepted : 2011.06.07
  • Published : 2011.07.20

Abstract

The specific rates of solvolysis of 1- naphthyl chloroformate (1-NaphOCOCl, 1) and 2-naphthyl chloroformate (2-NaphOCOCl, 2) have been determined in a wide range of solvents at 2.0 and 10.0$^{\circ}C$. These give a satisfactory correlation over the full range of solvents when the extended (two-term) Grunwald-Winstein equation is applied. The sensitivities (l and m-values) to changes in solvent nucleophilicity ($N_T$) and solvent ionizing power ($Y_{Cl}$) are similar to those reported previously for solvolysis of phenyl chloroformate, which has been suggested to proceed through an addition-elimination mechanism with the addition step being rate determining. For four representative solvents, studies were made at several temperatures and activation parameters determined. These observations were also compared with those previously reported for phenyl chloroformates and naphthoyl chlorides.

Keywords

References

  1. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  2. Fainberg, A. H.; Winstein, S. J. J. Am. Chem. Soc. 1956, 78,2770. https://doi.org/10.1021/ja01593a033
  3. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  4. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem.1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  5. Kevill, D. N.; D’Souza, M. J. J. Chem. Res., Synop. 1993, 174.
  6. Lomas, J. S.; D’Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
  7. Schleyer, P. v. R.; Nicholas, R. D. J. Am. Chem. Soc. 1961, 83, 2700. https://doi.org/10.1021/ja01473a024
  8. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  9. Kevill, D. N. In Advances in Quantitative Structure-PropertyRelationship; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996;Vol. 1, pp 81-115.
  10. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin 2 1995,973.
  11. Kevill, D. N.; Ismail, N. H. J.; D'Souza, M. J. J. Org. Chem. 1994, 59, 6303. https://doi.org/10.1021/jo00100a036
  12. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop.1999, 150.
  13. D’Souza, M. J.; Reed, D. N.; Erdman, K. J.;Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
  14. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55.4304. https://doi.org/10.1021/jo00301a019
  15. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem.2003, 68, 3425. https://doi.org/10.1021/jo0207426
  16. Moss, R. A.; Tian, J.; Sauers, R. R. Org. Lett, 2004, 6, 4293. https://doi.org/10.1021/ol040055w
  17. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  18. Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  19. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  20. Kevill, D. N.; Reed, D.; Koyoshi, F.; D’Souza, M. J. Int. J. Mol. Sci. 2007, 8, 788. https://doi.org/10.3390/i8080788
  21. D’Souza, M. J.; Shuman, K. E.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2008, 9, 2231. https://doi.org/10.3390/ijms9112231
  22. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc. Perkin 2 1997, 1721.
  23. D’Souza, M. J.; Boggs, M. E.; Kevill, D. N. J. Phys. Org. Chem. 2006, 19, 173. https://doi.org/10.1002/poc.1010
  24. Ryu, Z. H.; Ju, C. S.; Sung, D. D.; Sung, N. C.; Bentley, T. W. Bull. Korean Chem. Soc. 2002, 23, 123. https://doi.org/10.5012/bkcs.2002.23.1.123
  25. Liu, K. T.; Hwang, P. Y. H.; Chen, H. I. J. Phys. Org. Chem. 2002, 15, 750. https://doi.org/10.1002/poc.549
  26. Villas-Boas, S. G.; Delicado, D. G.; Akesson, M.; Nielson, J. Anal. Biochem. 2003, 322, 134. https://doi.org/10.1016/j.ab.2003.07.018
  27. Biermann, U.; Metzger, J. O. J. Am. Chem. Soc. 2004, 126, 10319. https://doi.org/10.1021/ja048904y
  28. Matzner, M.; Kurkjy, R. P.; Cotter, R. J. Chem. Rev. 1964, 64, 645. https://doi.org/10.1021/cr60232a004
  29. Koo, I. S.; Yang, K.; Kang, D. H.; Park, H. J.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 577.
  30. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 2002, 1283.
  31. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1083.
  32. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  33. Lee, Y. W.; Seong, M. H.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 3366. https://doi.org/10.5012/bkcs.2010.31.11.3366
  34. D'Souza, M. J.; Hailey, S. M.; Kevill, D. N. Int. J. Mol. Sci. 2010, 11, 2253. https://doi.org/10.3390/ijms11052253
  35. D'Souza, M. J.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2011, 12, 1161. https://doi.org/10.3390/ijms12021161
  36. Kevill, D. N.; Koyoshi, F.; D'Souza, M. J. Int. J. Mol. Sci. 2007, 8, 346. https://doi.org/10.3390/i8040346
  37. Reis, M. C.; Elvas-Leitao, R.; Martins, F. Int. J. Mol. Sci. 2008, 9, 1704. https://doi.org/10.3390/ijms9091704
  38. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 2008, 61.
  39. D'Souza, M. J.; Darrington, A. M.; Kevill, D. N. Org. Chem. Inter. 2010, 2010, 1.

Cited by

  1. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13010665
  2. Correlation of the Rates of Solvolyses of 4-Methylthiophene-2-carbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.499
  3. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  4. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14047286
  5. -Chlorophenyl Chlorothionoformate Esters vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/248534
  6. Studies of Solvolyses of Di-n-butyl Phosphorochloridate by Extended Grunwald-Winstein Equation vol.59, pp.5, 2015, https://doi.org/10.5012/jkcs.2015.59.5.373
  7. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2011, https://doi.org/10.5012/bkcs.2012.33.9.2971