DOI QR코드

DOI QR Code

Optimal combination of 3-component photoinitiation system to increase the degree of conversion of resin monomers

레진 모노머의 중합전환률 증가를 위한 3종 중합개시 시스템의 적정 비율

  • Kim, Chang-Gyu (Department of Conservative Dentistry, Dankook University College of Dentistry, Institute of Dental Science) ;
  • Moon, Ho-Jin (Department of Conservative Dentistry, Dankook University College of Dentistry, Institute of Dental Science) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, Dankook University College of Dentistry, Institute of Dental Science)
  • 김창규 (단국대학교 치과대학 치과보존학교실) ;
  • 문호진 (단국대학교 치과대학 치과보존학교실) ;
  • 신동훈 (단국대학교 치과대학 치과보존학교실)
  • Received : 2011.06.20
  • Accepted : 2011.07.11
  • Published : 2011.07.29

Abstract

Objectives: This study investigated the optimal combination of 3-component photoinitiation system, consisting of CQ, p-octyloxy-phenyl-phenyl iodonium hexafluoroantimonate (OPPI), and 2-dimethylaminoethyl methacrylate (DMAEMA) to increase the degree of conversion of resin monomers, and analyze the effect of the ratio of the photoinitiator to the co-initiator. Materials and Methods: Each photoinitiators (CQ and OPP) and co-initiator (DMAEMA) were mixed in three levels with 0.2 wt.% (low concentration, L), 1.0 wt.% (medium concentration, M), and 2.0 wt.% (high concentration, H). A total of nine groups using the Taguchi method were tested according to the following proportion of components in the photoinitiator system: LLL, LMM, LHH, MLM, MMH, MHL, HLH, HML, HHM. Each monomer was polymerized using a quartz-tungsten-halogen curing unit (Demetron 400, USA) for 5, 20, 40, 60, 300 sec and the degree of conversion (DC) was determined at each exposure time using FTIR. Results: Significant differences were found for DC values in groups. MMH group and HHM group exhibited greater initial DC than the others. No significant difference was found with the ratio of the photoinitiators (CQ, OPPI) to the co-initiator (DMAEMA). The concentrations of CQ didn't affect the DC values, but those of OPPI did strongly. Conclusions: MMH and HHM groups seem to be best ones to get increased DC. MMH group is indicated for bright, translucent color and HHM group is good for dark, opaque colored-resin.

연구목적: 여러 가지 문제점을 가지고 있는 기존의 중합개시제인 CQ와 새로운 개시제인 p-octyloxy-phenyl-phenyl iodonium hexafluoroantimonate (OPPI), 중합촉진제인 지방족 아민(DMAEMA)을 포함한 3종 중합개시시스템을 함유한 레진 모노머의 중합전환률을 증진시키기 위한 각각의 조성 비율을 알아보고 중합개시제와 중합촉진제의 비율에 따른 영향을 분석하고자 하였다. 연구 재료 및 방법: BisGMA/BisEMA/TEGDMA 조성의 레진 모노머를 제조한 다음 다양한 농도 조합의 CQ, OPPI, DMAEMA를 혼합하였다. 각각의 물질을 0.2 wt.% (저농도, L), 1.0 wt.% (중간농도, M), 2.0 wt.% (고농도, H)의 3가지 농도로 혼합하였으며, 그 농도 비율에 따라 9개의 실험군으로 제작하였다: LLL, LMM, LHH, MLM, MMH, MHL, HLH, HML, HHM (CQ-OPPI-DMAEMA의 농도) 중합 시스템이 함유된 각각의 레진 모노머를 NaCl disk에 압착한 다음 Demetron 400 광중합기를 이용하여 5초, 20초, 40초, 60초, 300초 동안 광중합 하였으며, FTIR로 전환률(Degree of Conversion, DC)을 측정하였다. 조성비율은 ANOVA와 Duncan 사후검정법을 이용하였으며 중합개시제와 중합촉진제의 비율이 같은 실험군들의 상호비교에는 T-검정도 시행하였다. 결과: 중합개시시스템을 이루는 조성들의 농도 조합에 따라 중합전환률의 차이를 보였으며, MMH 군과 HHM 군이 높은 초기 중합전환률을 보였다. 중합개시제(CQ, OPPI)와 중합촉진제인 DMAEMA의 비율에 따른 중합전환률의 차이를 보이지 않았으며, CQ의 농도는 전환률에 영향을 주지 않은 반면, OPPI의 농도는 전환률에 영향을 미쳤다. 결론: 중합전환률이 높으며 밝은 색상이 필요한 경우에는 MMH 조합을, 짙거나 불투명한 경우에는 MMH 조합이 추천된다.

Keywords

References

  1. Asmussen E, Peutzfeldt A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater 1998;14:51-56. https://doi.org/10.1016/S0109-5641(98)00009-8
  2. Lovell LG, Stansbury JW, Syrpes DC, Bowman CN. Effects of composition and reactivity on the reaction kinetics of dimethacrylate/dimethacrylate copolymerizations. Macromolecules 1999;32:3913-3921. https://doi.org/10.1021/ma990258d
  3. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002;23:1819-1829. https://doi.org/10.1016/S0142-9612(01)00308-8
  4. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resins. Dent Mater 2006;22:1-7. https://doi.org/10.1016/j.dental.2005.11.026
  5. Stansbury JW. Curing dental resins and composites by photopolymerization. J Esthet Dent 2000;12:300-308. https://doi.org/10.1111/j.1708-8240.2000.tb00239.x
  6. Kim JH, Shin DH. Microleakage of the experimental composite resin with three component photoinitiator systems. J Kor Acad Cons Dent 2009;34:333-339. https://doi.org/10.5395/JKACD.2009.34.4.333
  7. Angiolini L, Caretti D, Salatelli E. Synthesis and photoinitiation activity of radical polymeric photoinitiators bearing side-chain camphoroquinone moieties. Macromol Chem Phys 2000;201:2646-2653. https://doi.org/10.1002/1521-3935(20001201)201:18<2646::AID-MACP2646>3.0.CO;2-D
  8. Dart EC, Nemcek J. Photopolymerisable composition. Great Britain Patent Specification No. 1408265 (1971).
  9. Dart EC, Nemcek J. Photopolymerisable composition. Japanese Patent No. Toku-Kou-Sho 54-10986 (1979).
  10. Fujisawa S, Kadoma Y, Masuhara E. Effects of photoinitiators for the visible-light resin system on hemolysis of dog erythrocytes and lipid peroxidation of their components. J Dent Res 1986;65:1186-1190. https://doi.org/10.1177/00220345860650091401
  11. Arikawa H, Takahashi H, Kanie T, Ban S. Effect of various visible light photoinitiators on the polymerization and color of light-activated resin. Dent Mater J 2009;28:454-460. https://doi.org/10.4012/dmj.28.454
  12. Neumann MG, Schmitt CC, Ferreira GC, Correa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 2006;22:576-584. https://doi.org/10.1016/j.dental.2005.06.006
  13. Brackett MG, Brackett WW, Browning WD, Rueggeberg FA. The effect of light curing source on the residual yellowing of resin composites. Oper Dent 2007;32:443-450. https://doi.org/10.2341/06-129
  14. Bowen RL, Cobb EN, Rapson JE. Adhesive bonding of various materials to hard tooth tissues: Improvement in bond strength to dentin. J Dent Res 1982;61:1070-1076. https://doi.org/10.1177/00220345820610090901
  15. Tay FR, King NM, Suh BI, Pashley DH. Effect of delayed activation of light-curing resin composites on bonding of all in-one adhesives. J Adhes Dent 2001;3:207-225.
  16. Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y. Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mater J 1995;14:23-30. https://doi.org/10.4012/dmj.14.23
  17. Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater 1999;15:120-127. https://doi.org/10.1016/S0109-5641(99)00021-4
  18. Guo X, Wang Y, Spencer P, Ye Q, Yao X. Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin. Dent Mater 2008;24:824-831. https://doi.org/10.1016/j.dental.2007.10.003
  19. Shin DH, H. Rawls RL. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater 2009;25:1030-1038. https://doi.org/10.1016/j.dental.2009.03.004
  20. Brandt WC, Schneider LF, Frollini E, Correr-Sobrinho L, Sinhoreti MA. Effect of different photo-initiators and light curing units on degree of conversion of composites. Braz Oral Res 2010;24:263-270. https://doi.org/10.1590/S1806-83242010000300002
  21. Yoshida K, Greener EH. Effect of photoinitiator on degree of conversion of unfilled light-cured resin. J Dent 1994;22:296-299. https://doi.org/10.1016/0300-5712(94)90064-7
  22. Schneider LF, Consani S, Sakaguchi RL, Ferracane JL. Alternative photoinitiator system reduces the rate of stress development without compromising the final properties of the dental composite. Dent Mater 2009;25:566-572. https://doi.org/10.1016/j.dental.2008.10.007
  23. Lin CL, Chang WJ, Lin YS, Chang YH, Lin YF. Evaluation of the relative contributions of multi-factors in an adhesive MOD restoration using FEA and the Taguchi method. Dent Mater 2009;25:1073-1081. https://doi.org/10.1016/j.dental.2009.01.105
  24. Park HJ, Son SA, Hur B, Kim HC, Kwon YH, Park JK. Effect of the difference in spectral outputs of the single and dual-peak LEDs on the microhardness and the color stability of resin composites. J Kor Acad Cons Dent 2011;36:108-113. https://doi.org/10.5395/JKACD.2011.36.2.108
  25. Peutzfeldt A, Asmussen E. In vitro wear, hardness, and conversion of diacetyl-containing and propanal-containing resin materials. Dent Mater 1996;12:103-108. https://doi.org/10.1016/S0109-5641(96)80076-5
  26. Brandt WC, de Moraes RR, Correr-Sobrinho L, Sinhoreti MA, Consani S. Effect of different photo-activation methods on push out force, hardness and cross-link density of resin composite restorations. Dent Mater 2008;24:846-850. https://doi.org/10.1016/j.dental.2007.09.012
  27. Carmichael AJ, Gibson JJ, Walls AW. Allergic contact dermatitis to bisphenol-A-glycidyldimethacrylate (Bis-GMA) dental resin associated with sensitivity to epoxy resin. Br Dent J 1997;183:297-298. https://doi.org/10.1038/sj.bdj.4809499
  28. Ferracane JL, Greener EH. Fourier transform infrared analysis of degree of polymerization in unfilled resins-methods comparison. J Dent Res 1984;8:1093-1095.
  29. Alvim HH, Alecio AC, Vasconcellos WA, Furlan M, de Oliveira JE, Saad JRC. Analysis of camphoroquinone in composite resins as a function of shade. Dent Mater 2007;23:1245-1249. https://doi.org/10.1016/j.dental.2006.11.002
  30. De Raaff AM, Marino TL, Neckers DC. Optimized cure efficiency using a fluorone visible light photoinitiator and a novel charge transfer: complex initiating system. In: RAI/TECH Conference. 1996.
  31. He JH, Mendoza VS. Synthesis and study of a novel hybrid UV photoinitiator: p-benzoyldiphenyliodonium hexafluorophosphate (PhCOPhl + PhPF). J Polym Sci A: Polym Chem 1996;34:2809-2816. https://doi.org/10.1002/(SICI)1099-0518(19960930)34:13<2809::AID-POLA27>3.0.CO;2-F
  32. Schneider LF, Cavalcante LM, Consani S, Ferracane JL. Effect of co-initoator ratio on the polymer properties of experimental resin composites formulated with camphoroquinone and phenyl-propanedione. Dent Mater 2009;25:369-375. https://doi.org/10.1016/j.dental.2008.08.003
  33. Musanje L, Ferracane JL, Sakaguchi RL. Determination of the optimal photoinitiator cencentraction in dental composites based on essential material properties. Dent Mater 2009;25:994-1000. https://doi.org/10.1016/j.dental.2009.02.010
  34. Neumann MG, Miranda WG Jr, Schmitt CC, Rueggeberg FA, Correa IC. Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent 2005;33:525-532 https://doi.org/10.1016/j.jdent.2004.11.013
  35. Dewaele M, Truffier-Boutry D, Leloup G, Devaux J. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revised. Dent Mater 2006;22:359-365. https://doi.org/10.1016/j.dental.2005.03.014
  36. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000;16:292-296. https://doi.org/10.1016/S0109-5641(00)00020-8

Cited by

  1. Effect of glycerin on the surface hardness of composites after curing vol.36, pp.6, 2011, https://doi.org/10.5395/JKACD.2011.36.6.483
  2. Effect of CQ-amine ratio on the degree of conversion in resin monomers with binary and ternary photoinitiation systems vol.37, pp.2, 2012, https://doi.org/10.5395/rde.2012.37.2.96