DOI QR코드

DOI QR Code

Inhibitory Effect of Paraconiothyrium minitans CM2 on Sclerotial Germination of Sclerotinia sclerotiorum and S. minor Causing Sclerotinia Rot of Lettuce

Paraconiothyrium minitans CM2의 상추균핵병균(Sclerotinia sclerotiorum, S. minor) 균핵 발아에 대한 억제 효과

  • Lee, Sang-Yeob (Agricultural Microbiology Team, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kim, Wan-Gyu (Agricultural Microbiology Team, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Hong, Sung-Kee (Crop Protection Division, NAAS, RDA) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Team, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Park, Kyung-Seok (Agricultural Microbiology Team, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
  • 이상엽 (농촌진흥청 국립농업과학원 농업미생물팀) ;
  • 김완규 (농촌진흥청 국립농업과학원 농업미생물팀) ;
  • 홍성기 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물팀) ;
  • 박경석 (농촌진흥청 국립농업과학원 농업미생물팀)
  • Received : 2011.07.20
  • Accepted : 2011.07.25
  • Published : 2011.08.01

Abstract

One fungal isolate CM2 parasitic to Sclerotinia sclerotiorum and S. minor causing Sclerotinia rot of lettuce was identified as Paraconiothyrium minitans based on its morphological and molecular characteristics. P. minitans CM2 grew best on PDA with pH 6.5 at $22^{\circ}C$ under alternating cycles of 12 hr near ultraviolet light and 12 hr darkness. Scleroria of S. sclerotiorum and S. minor treated with conidial suspension of P. minitans CM2 did not directly germinate and produced no apothecia.

2종의 상추균핵병균(S. sclerotiorum, S. minor)에 기생성인 선발진균(CM2)의 형태적 및 분자적 특성을 조사한 결과, Paraconiothyrium minitans로 동정되었다. P. minitans CM2의 균사 배양조건은 pH 6.5로 조절한 PDA배지를 사용하고, $22^{\circ}C$에서 1일 12시간 주기의 근자외선광을 처리하여 배양하는 것이 가장 좋은 것으로 나타났다. P. minitans CM2의 분생포자현탁액을 상추균핵병균의 균핵에 처리하여 발아에 미치는 영향을 조사한 결과, 균핵의 직접발아와 자낭반 형성이 전혀 이루어지지 않았다.

Keywords

References

  1. Copping L. G. 2009. The manual of biocontrol agents. Fourth edition. BCPC pp 851.
  2. Fravel. D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  3. Hornby, D. 1990. Biological control of soilborne plant pathogens. C.A.B International, Wallingford, Oxon, UK. pp 479.
  4. Kim, W. G. and Cho, W. D. 2002. Occurrence of Sclerotinia Rot on Composite Vegetable Crops and the Causal Sclerotinia spp. Mycobiology 30:41-46. https://doi.org/10.4489/MYCO.2002.30.1.041
  5. McQuilken Mark P., Budge Simon P.and Whipps John M. 1997. Effects of culture media and environmental factors on cinidial germination, pycnidial production and hypahal extension of Coniothyrium minitans. Mycol. Res. 101(1):11-17. https://doi.org/10.1017/S0953756296002018
  6. Parker, C. A., Rovira, A. D., Moore, K.J., Wong, P. T. W. and Kollmorgen, J. F. 1985. Ecology and management of soilborne plant pathogens. The American Phytopathological Society. St. Paul, Minnesota, USA. pp. 358.
  7. Punithalingam, E. 1982. Coniothyrium minitans. CMI Descriptions of Pathogenic and Bacteria No. 732.
  8. Rusell, P. E., Milling, R. J. and Wright, K. 1995. Control of fungi pathogenic to plants. In fifty years of antimicrobials: past perspectives and future trends.
  9. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.Molecular Biology and Evolution. doi:10.1093/molbev/msr121.
  10. Tanaka, Y. T., Omura, S. 1993. Agroactive compounds of microbial origin. Ann. Rev. Microbiol. 47:57-87. https://doi.org/10.1146/annurev.mi.47.100193.000421
  11. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  12. Ting Zhou and Greg J. B. 1998. Biological control strategies for Sclerotinia Diseases. 127-156. In : Plant-microbe interactions and biological control. Greg J. B., L. David K. Marcel Dekker, Inc. New York.
  13. Verkley, G. J. M., Silva, M. da, Wicklow, D. T. and Crous, P. W. 2004. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Studies in Mycology 50:323-335.
  14. Whipps J. M and Gerlagh M. 1992. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Myco. Res. 96(11):897-907. https://doi.org/10.1016/S0953-7562(09)80588-1

Cited by

  1. Biological control of Paraconiothyrium minitans CM2 on Lettuce Sclerotinia Rot Caused by Sclerotinia sclerotiorum vol.40, pp.4, 2012, https://doi.org/10.4489/KJM.2012.40.4.271
  2. Biological Control of Paraconiothyrium minitans S134 on Garlic White Rot Caused by Sclerotium cepivorum vol.40, pp.4, 2012, https://doi.org/10.4489/KJM.2012.40.4.282