DOI QR코드

DOI QR Code

Antioxidant Effects of Solvent Fraction from Sanguisorbae officinalis L. with Acetone

오이풀 아세톤 추출물을 이용한 용매 분획물의 항산화 효과

  • 김희영 (대구한의대학교 화장품약리학과) ;
  • 여신일 (메가젠 임플란트) ;
  • 이진태 (대구한의대학교 화장품약리학과)
  • Received : 2011.04.04
  • Accepted : 2011.06.01
  • Published : 2011.06.30

Abstract

The solvent extracts of Sanguisorbae officinalis L. were investigated for the activities of antioxidants as a functional ingredient for cosmetic products. The electron donating effect of ethyl acetate layer and n-butyl alcohol layer was appeared similar activity with positive control butylated hydroxy anisole (BHA) at all concentrations. In addition, in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging assay, ethyl acetate layer, n-butyl alcohol layer and water layer were over 99% effect at all concentrations and higher than that of BHA. Also in hydrogen peroxide scavenging assay, ethyl acetate layer and n-butyl alcohol layer were higher than that of positive control ascorbic acid. The measured superoxide dismutase (SOD)-like activity of n-butyl alcohol was more than 50% at concentration of 1,000 ${\mu}g/mL$ and superoxide anion radical scavenging ability showed more than 45% at 1,000 ${\mu}g/mL$ of n-butyl alcohol layer. All these findings suggested that ethyl acetate layer and n-butyl alcohol layer have a great potential as a cosmeceutical ingredient with an antioxidant effect.

오이풀 아세톤 추출물로부터 용매분획물의 기능성 화장품 소재로 활용하기 위하여 항산화 효과를 측정한 후 화장품 소재로서의 가능성을 검증하였다. 항산화 효과를 확인하기 위하여 electron donating ability을 측정한 결과 ethyl actate 층과 n-butyl alcohol 층이 전 농도에서 대조군 BHA와 유사한 활성을 나타내었으며, ABTS radical cation decolorization assay 결과 ethyl acetate 층, n-butyl alcohol 층, water 층 모두 전 농도에서 99% 이상의 효과를 나타내어 BHA와 유사하였다. hydrogen peroxide scavenging assay 결과 ethyl acetate 층, n-butyl alcohol 층이 대조군 ascorbic acid 보다 효과가 높았다. Superoxide dismutase (SOD) 유사 활성 측정 결과, n-butyl alcohol 층이 1,000 ${\mu}g/mL$ 농도에서 50% 이상의 효능이 있었으며, Superoxide anion 라디칼 소거능은 n-butyl alcohol 층의 1,000 ${\mu}g/mL$에서 45%의 효과가 있었다. 이상의 결과로 미루어 보아 오이풀 아세톤 추출물의 분획물 중 ethyl acetate 층과 n-butyl alcohol 층에서 항산화 효과가 있었으며, 새로운 항산화 화장품의 소재로서 가능성을 확인 할 수 있었다.

Keywords

References

  1. Ancerewicz, JE, Migliavacca PA, Carrupt B, Testa F, Bree R, Zini JP, Tillernent S, Labidalle D, Guyot AM, Chauvent-Monges CA, and Ridant AL (1998) Structure property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Rad Biol Med 25, 113-120. https://doi.org/10.1016/S0891-5849(98)00072-0
  2. Bailey AJ, Robinson SP, and Balian G (1974) Biological significance of the intermolecular crosslinks of collagen, Nature 251, 105-109. https://doi.org/10.1038/251105a0
  3. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1200.
  4. Cho TY (1999) Free radical scavenging activity of tryprophan metabolites. MS Thesis, Yonsei University, Seoul, Korea.
  5. Fidovich I (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245, 4053-4057.
  6. Ha BJ (2001) In Cosmeceuticals, p. 55, Shingwang Press, Seoul, Korea.
  7. Halliwell B and Gutteridge JMC (1999) In Free Radical in Biology and Medicine, (3rd ed.), Oxford University Press, New York, NY.
  8. Jayaprakasha GK, Jaganmohan Rao L, and Sakariah KK (2004) Antioxidant activities of flavidin in different in vitro moder systems. Bioorg Med Chem Lett 12, 5141-5146. https://doi.org/10.1016/j.bmc.2004.07.028
  9. Kang BS, Ko UC, Kim SH, No SH, Shin YB, Song HJ, Shin MG, Ann DG, Lee SI, Lee YJ, Lee TH, and Ju YS (1994) Collaboration with a national college of oriental medicine herbology professor association. In Herbology, pp. 392-393, Yonglim Press, Seoul, Korea
  10. Kasuga A, Aoyagi Y, and Sugahara T (1998) Antioxidants activities of edible plants. Nippon Shokuhin Kogyo Gakk 35, 22.
  11. Klug D, Rabani J, and Fridovich I (1972) A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 247, 4839-4842.
  12. Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27, 969. https://doi.org/10.1016/0031-9422(88)80254-1
  13. Marklund S and Marklund G (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47, 468.
  14. Nagai T, Inoue R, Inoue H, and Suzuki N (2002) Scavenging capacities of pollen extract from Cistus Ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals and DPPH radicals. Nutr Res 22, 519-526. https://doi.org/10.1016/S0271-5317(01)00400-6
  15. One T, Tsuruta R, Fujita M, Aki HS, Kutsuna S, Kawamura Y, Wakatsuki J, Aoki T, Kobayashi C, Kasaoka S, Maruyama I, Yuasa M, and Maekawa T (2009) Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain inchemia/reperfusion. Brain Res 1305, 158-167. https://doi.org/10.1016/j.brainres.2009.09.061
  16. Park EJ and Kang MH (2002) Application of the alkaline comet assay for detecting oxidative DNA damage in human biomonitoring. J Korean Soc Food Sci Nutr 35, 213-222.
  17. Park SN (1997) Skin aging and antioxidants. J Soc Cos Chem Korea 23, 75-132.
  18. Roberta R, Nicoletta P, Anna P, Anath P, Min Y, and Catherine RE (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Yoon WJ, Lee JA, Kim JY, Oh DJ, Jung YH, Lee WJ, and Park SY (2006) Anti-oxidant activities and anti-inflammatory effects on Artemisia scoparia. Kor J Pharmacogn 37, 235-240.

Cited by

  1. Antioxidant and α-Glucosidase Inhibition Activities of Solvent Fractions from Methanolic Extract of Sericea Lespedeza (Lespedeza cuneata G. Don) vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1508
  2. Purification and Characterization of Extracellular Phytase from Bacillus licheniformis Isolated from Fish Gut vol.85, pp.3, 2015, https://doi.org/10.1007/s40011-015-0571-4
  3. Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-016-0378-x
  4. Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153) vol.60, pp.11, 2018, https://doi.org/10.1007/s12033-018-0116-1
  5. Trimethyltin 유도성 인지기능 저하 동물 모델에 대한 들기름의 개선효과 vol.47, pp.3, 2011, https://doi.org/10.9721/kjfst.2015.47.3.373
  6. 고포도당으로 유도된 산화 스트레스에 대한 로젤 아세트산에틸 분획물의 신경세포 보호효과 vol.48, pp.3, 2011, https://doi.org/10.9721/kjfst.2016.48.3.284