DOI QR코드

DOI QR Code

Experimental Investigation on Thermal Characteristics of Heat Pipes Using Water-based MWCNT Nanofluids

물 기반 탄소나노튜브 나노유체 히트파이프의 열적 특성에 관한 실험적 해석

  • Ha, Hyo-Jun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kong, Yu-Chan (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Do, Kyu-Hyung (Korea Institute of Machinery and Materials) ;
  • Jang, Seok-Pil (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 하효준 (한국항공대학교 항공우주 및 기계공학과) ;
  • 공유찬 (한국항공대학교 항공우주 및 기계공학과) ;
  • 도규형 (한국기계연구원) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2010.12.14
  • Accepted : 2011.06.29
  • Published : 2011.07.10

Abstract

In this paper, thermal characteristics of cylindrical grooved wick heat pipes with water-based MWCNT nanofluids as working medium are experimentally investigated. Volume fractions of nanoparticles are varied with 0.1% to 0.5%. Transient hot wire method developed in house is used to measure the thermal conductivity of nanofluids. It is enhanced by up to 29% compared to that of DI water. The thermal resistances and temperature distributions at the surface of the heat pipes are measured at the same evaporation temperature. The experimental results show that the thermal resistance of the heat pipes with water-based MWCNT nanofluids as working fluid is reduced up to 35.2% compared with that of heat pipe using DI water. The reduction rate of thermal resistance is greater than the enhancement rate of thermal conductivity. Finally, based on the experimental results, we present the reduction of the thermal resistances of the heat pipes compared with conventional heat pipes cannot be explained by only the thermal conductivity of water-based MWCNT nanofluids.

Keywords

References

  1. Faghri, A., 1995, Heat Pipe Science and Technology, Taylor and Francis.
  2. Jang, S. P., Kim, S. J., Paik, K. Y., 2003, Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-thermal Sensor Array, Sensors and Actuators A: Physical, Vol. 105, pp. 211-224.
  3. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME Journal of Heat Transfer, Vol. 121, pp. 280-289. https://doi.org/10.1115/1.2825978
  4. Eastman, J. A., Choi, S. U. S., Li, S., and Yu, W., Thompson, L. J., 2001, Anomalous increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appied Physics Letters, Vol. 78, pp. 718-720. https://doi.org/10.1063/1.1341218
  5. Choi, S. U. S., Zhang., Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., 2001, Anomalous thermal conductivity enhance ment in nanotube suspensions, Applied Physics Letters, Vol. 79, pp. 2252-2254. https://doi.org/10.1063/1.1408272
  6. Wang, X. Q., Mujumdar, A. S., 2007, Heat transfer characteristics of nanofluids:a review, international Journal of Thermal Sciences, Vol. 46, No. 1, pp. 1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
  7. You, S. M., Kim, J. H. and Kim, K. H., 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, Vol. 83, pp. 3374-3376. https://doi.org/10.1063/1.1619206
  8. Pak, B. C. and Cho, Y. I., 1998, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle, Experimental Heat Transfer, Vol. 11, pp. 151-170. https://doi.org/10.1080/08916159808946559
  9. Yang, Y., Zhang, Z. G., Grulke, E. A., Anderson, W. B., and Wu, G., 2005, Heat Transfer Properties of Nanoparticle-in-fluid Dispersions (nanofluids) in Laminar Flow, International Journal of Heat and Mass Transfer, Vol. 48, pp. 1107-1116. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
  10. Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y., and Chen, P. H., 2004, Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Materials Letters, Vol. 58, pp. 1461-1465. https://doi.org/10.1016/j.matlet.2003.10.009
  11. Ma, H. B., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., and Choi, S. U. S., Tirumala, M., 2006, Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Applied Physics Letters, Vol. 88, pp. 143-116.
  12. Kang, S. W., Wei, W. C., Tsai, S. H., and Yang, S. Y., 2006, Experimental investigation of silver nano-fluid on heat pipe thermal performance, Applied Thermal Engineering, Vol. 26, pp. 2377-2382. https://doi.org/10.1016/j.applthermaleng.2006.02.020
  13. Lin, Y. H., Kang, S. W. and Chen, H. L., 2008, Effect of Silver Nano-fluid on Pulsating Heat Pipe Thermal Performance, Applied Thermal Engineering, Vol. 28, pp. 1312-1317. https://doi.org/10.1016/j.applthermaleng.2007.10.019
  14. Yang, X. F., Liu, Z. H. and Zhao, J., 2008, Heat Transfer Performance of a Horizontal Micro-grooved Heat Pipe Using CuO Nanofluids, J. Micromech. Microeng, Vol. 18, pp. 35-38.
  15. Do, K. H. and Jang, S. P., 2010, Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, International Journal of Heat and Mass Transfer, Vol. 53, pp. 2183-2192. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.020
  16. Do, K. H., Ha, H. J. and Jang, S. P., 2010, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, International Journal of Heat and Mass Transfer, Vol. 53, pp. 5888-5894. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.050
  17. Liu, Z. H. and Lu, L., 2009, Thermal Performance of an Axially Microgrooved Heat Pipe Using Carbon Nanotube Suspensions, Journal of Thermophysics and Heat Transfer, Vol. 23, pp. 170-175. https://doi.org/10.2514/1.38190
  18. Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., and Choi, C. J., 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of $Al_2O_3$ Nanoparticles, International Journal of Heat and Mass Transfer, Vol. 51, pp. 2651-2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  19. Muller, R. H., 1996, Zetapotential und Partikelladung in der Laborpraxis, 1st Ed., Stuttgar t:Wissenschaftliche Verlagsgesellschaft.
  20. Chi, S. W., 1976, Heat Pipe Theory and Practice a Sourcebook, McGraw-Hill, New York, pp. 197-210.
  21. Chi, S. W., 1976, Heat Pipe Theory and Practice a Sourcebook, McGraw-Hill, New York, pp. 197-210.

Cited by

  1. Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1040