DOI QR코드

DOI QR Code

Geochemical and Mineralogical Characterization of Arsenic-Contaminated Soil at Chonam Gold Mine, Gwangyang

광양 초남 금 광산 비소오염 토양의 지화학적 및 광물학적 특성

  • Kong, Mi-Hye (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim, Yu-Mi (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Roh, Yul (Department of Earth and Environmental Sciences, Chonnam National University)
  • 공미혜 (전남대학교 자연과학대학 지구환경과학과) ;
  • 김유미 (전남대학교 자연과학대학 지구환경과학과) ;
  • 노열 (전남대학교 자연과학대학 지구환경과학과)
  • Received : 2011.04.19
  • Accepted : 2011.06.02
  • Published : 2011.06.28

Abstract

Geochemical and mineralogical properties of a contamited soil should be taken into account to decide a remediation strategy for a given contaminant because development and optimization of soil remedial technologies are based on geochemical and mineralogical separation techniques. The objective of this study was to investigate the geochemical and mineralogical characteristics of arsenic-contaminated soils. The arsenic-contaminated soil samples were obtained from Chonam gold mine, Gwangyang, Chonnam, Particle size analysis, sequential extraction, and mineralogical analyses were used to characterize geochemical and mineralogical characteristics of the As-contaminated soils. Particle size analyses of the As-contaminated soils showed the soils contained 17-36% sand, 25-54% silt, 9-28% clay and the soil texture were sandy loam, loam, and silt loam. The soil pH ranged from 4.5 to 6.6. The amount of arsenic concentrations from the sequential soil leaching is mainly associated with iron oxides (1 to 75%) and residuals (12 to 91%). Major minerals of sand and silt fractions in the soils were feldspar, kaolinite, mica, and quartz and minor mineral of which is an iron oxide. Major minerals of clay fraction were composed of illite, kaolinite, quartz, and vermiculite. And minor minerals are iron oxide and rutile. The geochemical and mineralogical analyses indicated the arsenic is adsorbed or coprecipitated with iron oxides or phyllosilicate minerals. The results may provide understanding of geochemical and mineralogical characteristics for the site remediation of arsenic-contaminated soils.

오염된 토양의 정화방법을 선정은 토양의 지화학적 및 광물학적 특성에 근거하여 선정되어야 오염된 토양을 적절하게 정화할 수 있다. 따라서 이 연구는 비소로 오염된 토양의 적절한 정하방법 선정을 위하여 비소의 존재형태를 알아보기 위하여 토양의 지화학적 및 광물학적 특성을 연구하였다. 이 연구를 위하여 전남 광양지역의 초남 금 광산의 비소로 오염된 토양을 이용하였다. 비소오염 토양의 지화학적 및 광물학적 특성을 알아보기 위하여 입도분리, 연속추출, 그리고 광물학적 분석을 실시하였다. 입도분석 결과에 따르면 비소오염토양의 무게백분율은 모래가 17-36%, 미사가 25-54%, 점토가 9-28%이며, 토성은 사양토(sandy loam), 양토(loam), 미사질 양토 (silt loam)로 나타났다. 토양의 pH는 폐 금광산 갱구 앞 토양이 4.5-6.6.으로 강산성내지 약산성을 띠었다. 비소오염 토양의 각 입도에 비소분포는 모래에 9-81%, 미사에 9-67%, 점토에 7-28% 분포하고 있었다. 연속추출 실험 결과, 비소는 철 산화물을 추출했을 때 1-75%로 검출되었으며, 추출 후 잔여물에 12-91% 잔존하고 있었다. 모래와 미사의 주 구성광물은 고령석, 사장석, 석영, 운모로 나타났으며, 부 구성광물은 철 산화물이다. 점토의 주 구성광물은 고령석, 석영, 운모, 질석이며, 부 구성광물은 철 산화물과 금홍석 은이다. 또한 점토 내 철 산화물과 운모에서 비소가 발견되었다. 이러한 결과는 비소가 철 산화물 또는 점토 광물 등에 흡착 또는 공침하여 존재하는 것으로 사료된다. 이는 비소로 오염된 토양의 지화학적 특성과 광물학적 특성을 통해 오염된 토양을 정화하는데 정보를 제공할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Ahn, J.S., Kim, J.Y., Chon, C.M. and Moon, H.S. (2003) Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential. Econ. Environ. Geol., v.36, p.27-38.
  2. Aposhian, H.V., Zakharyan, R.A., Avram, M.D., Kopplin, M.J. and Wollenberg, M.L. (2003) Oxidation and Detoxification of Trivalent Arsenic Species. Toxicol. Appl. Pharmacol., v.193, p.1-8. https://doi.org/10.1016/S0041-008X(03)00324-7
  3. Boyle, R.W. (1979) The Geochemistry of Gold and Its Deposits (together with a chapter on geochemical prospecting for the element). Geol. Sur. Canada Bull., v.280, p.584.
  4. Chakraborty, S., Wolthers, M., Chatterjee, D. and Charlet, L. (2007) Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal. Coll. Inter. Sci., v.309, p.392-401. https://doi.org/10.1016/j.jcis.2006.10.014
  5. T.T. (1972) Selective Dissolution of Manganese Oxides from Soils and Sediments with Acidified Hydroxylamine Hydrochloride. Soil Sci. Soc. Amer. Madison. WI. 761-768pp.
  6. Charlet, L., Chakraborty, S., Varma, S., Tournassat, C., Wolthers, M., Chatterjee, D. and Roman R.G. (2005) Adsorption and Heterogeneous Reduction of Arsenic at the Phyllosilicate-Water Interface. ACS Symp. Ser., v.915, p.41.
  7. Ferguson, J.F. and Gavis, J. (1972) A Review of the Arsenic Cycle in Natural Waters. Water. Res., v.6, p.1259-1274. https://doi.org/10.1016/0043-1354(72)90052-8
  8. Holmgren, G.G.S. (1967) A Rapid Citrate-Dithionite Extractable Iron Procedure. Soil. Sci. Soc. Amer. Madison. WI. 210-211pp.
  9. Jones, C.A., Langner, H.W., Anderson, K., Modermott, T.R. and Inskeep, W.P. (2000) Rates of Microbially Mediated Arsenate Reduction and Solubilization. Soil. Sci. Soc. Am. J., v.64, p.600-608. https://doi.org/10.2136/sssaj2000.642600x
  10. Jung, H.B., Yun, S.T., Kim, S.O., So, C.S. and Jung, M.C. (2003) Heavy Metal Contamination and the Roles of Retention Pond and Hydrologic Mixing for Removal of Heavy Metals in Mine Drainage, Kwangyang Au-Ag Mine Area. J. Eng. Geol., v.13, p.29-50.
  11. Jung, M.C. (1994) Sequential Extraction of Heavy Metals in Soils and A Case Stdy. Econ. Environ. Geol., v.27, p.469-477.
  12. Kim, S.S. and Kim, J.J. (1995) The Gold-Silver Mineralization of the Kwangyang Mineralized Zone, the Southern Part of the Korean Peninsula. Journal of the Geological Society of Korea, v.31, p.416-430.
  13. Kunze, G.W. and Dixon, J.B. (1986) Pretreatment for Mineralogical Analysis. In Klute, A. (ed.) Methods of Soli Analysis. Part 1. Physical and Mineralogical Methods. Soil. Sci. Soc. Amer. Madison. WI. 91- 100pp.
  14. Lee, P.K, Kang, M.J., Choi, S.H. and Shin, S.C. (2004) Chemical Speciation and Potential Mobility of Heavy Metals in Tailings and Contaminated Soils. Econ. Environ. Geol., v.37, p.87-98.
  15. Lee, W. C. Jeong, J. -O, Kim, J.-Y. and Kim, S. -O. (2010) Characterization of Arsenic Immobilization in the Myungbong Mine Tailing. Econ. Environ. Geol., v.43, p.137-148.
  16. Masscheleyn, P.H., Delaune, R.D. and Patrick, W.H. Jr. (1991) Effect of Redox Potential and pH on Arsenic Speciation and Solubility in a Contaminated Soil. Environ. Sci. Technol., v.25, p.1414-1419. https://doi.org/10.1021/es00020a008
  17. Mckeague, J.A. and Day, J.H. (1966) Dithionite and Oxalate Extractable Fe and Al as Aids in Differentiating Various Classes of Soils. Soil Sci., v.46, p.13-22.
  18. McManus, J. (1988) Grain Size Determination and Interpretation. In Techmiques in Sedimentology. In Tucker, M. (ed.). Blackwell: Oxford. 63-85pp.
  19. Mok, W.M. and Wai, C.M. (1994) Mobilization of Arsenic in Contaminated River Waters. In Nriagu, J. O. (ed.) Arsenic in the Environment. Wiley, New York. 99- 117pp.
  20. NAS(National Academy of Sciences) (1977) Medical and Biological Effects of Environmental Pollutants Arsenic. Washington D.C., 117-172pp.
  21. Nesbitt, H.W., Muir, I.J. and Pratt, A.R. (1995) Oxidation of Arsenopyite by Air and Air-Saturated, Distilled Water, and Implications for Mechanism of Oxidation. Geochim. Cosmochim. Acta., v.59, p.1773-1786. https://doi.org/10.1016/0016-7037(95)00081-A
  22. Park, C.Y., Jeoung, Y.J. and Kim, S.K. (2001) Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea. Jour. Korean Earth Science Society, v.22, p.208-222.
  23. Patrick, W.H., Jr and Delaune, R.D. (1972) Characterization of the Oxidized and Reduced Zones in Flooded Soil. Soil Sci. Soc. Am. J., v.36, p.573-576. https://doi.org/10.2136/sssaj1972.03615995003600040024x
  24. Roh, Y., Lee, S.R., Choi, S-K., Elless, M.P. and Lee, S.Y. (2000) Physicochemical and Mineralogical Characterization of Uranium-Contaminated Soils. Soil Sed. Contam., v.9, p.463-486. https://doi.org/10.1080/10588330091134356
  25. Schwertmann, U. (1964) The Differentiation of Iron Oxides in Soil by Extraction with Ammonium Oxalate Solution. Z. Pflanzenernaehr. Dueng. Bodenk., v.105, p.194-202. https://doi.org/10.1002/jpln.3591050303
  26. Smedley, P.L. and Kinniburgh, D.G. (2002) A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem., v.17, p.517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  27. Suh, J.W., Yoon, H.O. and Jeong, C.H. (2008) The Distribution Characteristics and Contamination of Heavy Metals in Soil from Dalcheon Mine. Journal of the Mineralogical Society of Korea, v.21, p.57-65.
  28. Tessier, A., Campbell, P.G.C. and Bisson, M. (1979) Sequential Extraction Procedure for the Speciation of Particulate Trace Metal. Anal. Chem., v.51, p.844-850. https://doi.org/10.1021/ac50043a017
  29. Williams, J.W. and Silver, S. (1984) Bacterial Resistance and Detoxification of Heavy Metals. Enz. Microb. Technol., v.6, p.530-537. https://doi.org/10.1016/0141-0229(84)90081-4
  30. Yeon, K.H., Lee, P.K., Youm, S.J. and Choi, S.H. (2005) Contamination and Mobility of Toxic Trace Elements in Tailings of Samsanjeil Mine. Econ. Environ. Geol., v.38, p.451-462.

Cited by

  1. Study on As Removal from Mine Tailing using MGS Gravity Separator vol.23, pp.5, 2014, https://doi.org/10.7844/kirr.2014.23.5.36
  2. Behavior and Geochemical Characteristics of Au and Heavy Metals in the Water System at the Abandoned Bonjeong Gold Mine vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.363
  3. Characterization of Arsenic Sorption on Manganese Slag vol.26, pp.4, 2013, https://doi.org/10.9727/jmsk.2013.26.4.229