DOI QR코드

DOI QR Code

Hydrothermal Synthesis and Mechanical Characterization of 3mol%Y2O3-ZrO2 by Urea Contents

우레아 첨가량 변화에 따라 수열합성법으로 제조 된 3mol%Y2O3-ZrO2 분말의 합성 및 기계적 특성 평가

  • Lee, Hak-Joo (Department of Materials Science and Engineering, PaiChai University) ;
  • Go, Myung-Won (Department of Dental Technology, Gwang Yang Health College University) ;
  • Kim, Taik-Nam (Department of Information and Electronic Materials Engineering, PaiChai University)
  • 이학주 (배재대학교 대학원 재료공학과) ;
  • 고명원 (광양보건대학 치기공과) ;
  • 김택남 (배재대학교 정보전자소재공학과)
  • Received : 2011.07.12
  • Accepted : 2011.07.24
  • Published : 2011.08.27

Abstract

The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at $180^{\circ}C$ for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens ($33\;mm{\times}8\;mm{\times}1{\pm}0.5\;mm$) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.

Keywords

References

  1. K. W. Schilichting, N. P. Padture and P. G. Kelemens, J. Mater. Sci., 36, 3003 (2001). https://doi.org/10.1023/A:1017970924312
  2. M. Leoni, R. L. Jones and P. Scardi, Surf. Coating. Tech. 108-109, 107 (1998). https://doi.org/10.1016/S0257-8972(98)00617-3
  3. H. C. Yao and Y. F. Y. Yao, J. Catal., 86, 254 (1984). https://doi.org/10.1016/0021-9517(84)90371-3
  4. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  5. Z. Y. Can, H. Narita, J. Mizusaki and H. Tagawa, Solid State Ionics, 79, 344 (1995). https://doi.org/10.1016/0167-2738(95)00085-K
  6. A. Dubbe, Sensor. Actuator. B Chem., 88, 138 (2003). https://doi.org/10.1016/S0925-4005(02)00317-9
  7. R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature 258, 703 (1975). https://doi.org/10.1038/258703a0
  8. R. C. Garvie, J. Phys. Chem. 69, 1238 (1965). https://doi.org/10.1021/j100888a024
  9. R. C. Garvie, J. Phys. Chem. 82, 218 (1978). https://doi.org/10.1021/j100491a016
  10. W. E. Lee and W. M. Rainforth, Ceramic Microstructures: Property Control by Processing, p. 317, Chapman & Hall, London, UK (1994).
  11. R. E. Juarez, D. G. Lamas, G. E. Lascalea and N. E. Walsoe de Reca, Defect and Diffusion Forum, 177-178, 1 (1999). DOI : 10.4028/www.scientific.net/DDF.177-178.1.
  12. Y. Hirata, M. Nakamura, M. Miyamoto, Y. Tanaka and X. H. Wang, J. Am. Ceram. Soc., 89(6), 1883 (2006). https://doi.org/10.1111/j.1551-2916.2006.01046.x
  13. I. -M. Hung, D. -T. Hung, K. -Z. Fung and M. -H. Hon, J. Eur. Ceram. Soc., 26, 2627 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.069
  14. H. Kumazawa, T. Inoue and E. Sada, Chem. Eng. J. Biochem. Eng. J., 55, 93 (1994). https://doi.org/10.1016/0923-0467(94)87011-X
  15. W. Pyda, K. Haberko and M. M. Bucko, J. Am. Ceram. Soc., 74(10), 2622 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06810.x
  16. M. Dechamps, B. Djuricic and S. Pickering, J. Am. Ceram. Soc., 78(11), 2873 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09058.x
  17. K. Matsui, H. Suzuki, M. Ohgai and H. Arashi, J. Am. Ceram. Soc., 78(1), 146 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08374.x
  18. H. J. Lee, T. N. Kim, S. C. Bea, M. W. Gon and J. K. Ryu, J. Kor. Mater. Res., 20(10), 518 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.10.518
  19. H. Toraya, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc., 67, C119 (1984).
  20. P. M. Schaber, J. Colson, S. Higgins, E. Dietz, D. Thielen,B. Anspach, and J. Brauer, Am. Lab., August, 13 (1999).
  21. G. Xu , Y. Zhang, C. Liao and C. Yan., J. Am. Ceram. Soc., 85(4), 995 (2002).
  22. S. A. Degtyarev and G. F. Voronin, Calphad, 12(1), 73 (1988). https://doi.org/10.1016/0364-5916(88)90031-4