DOI QR코드

DOI QR Code

Evaluation of Strengthening Performance of Stiff Type Polyurea Retrofitted RC Slab Based on Attachment Procedure

경질형 폴리우레아의 개발 및 보강 순서에 따른 RC 슬래브의 성능 평가

  • Kim, Jang-Ho Jay (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Park, Jeong-Cheon (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Lee, Sang-Won (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Kim, Sung-Bae (Dept. of Civil and Environmental System Engineering, Yonsei University)
  • 김장호 (연세대학교 사회환경시스템공학부) ;
  • 박정천 (연세대학교 사회환경시스템공학부) ;
  • 이상원 (연세대학교 사회환경시스템공학부) ;
  • 김성배 (연세대학교 사회환경시스템공학부)
  • Received : 2011.03.30
  • Accepted : 2011.05.30
  • Published : 2011.08.31

Abstract

Recent studies to improve reinforcement of structures have developed stiff type Polyurea by using highly polymized compound Polyurea, but the reinforcing effect of it appears to be merely good. To find the proper usage of Polyurea as structural reinforcement, stiff type Polyurea has developed by manipulating the ratio of the components that consist flexural type Polyurea and the developed stiff type Polyurea shows higher hardness and tensile capacity. The reinforcement effect evaluation of has been performed by the polyurea applied RC slab specimens, and the reinforcement effect of the combination of fiber sheet and polyurea has been tested. The results shows that the Polyurea applied specimens have significant improvement on hardness and ductility compare to those of unreinforced. Also, the specimens that stiff type Polyurea is sprayed on fiber sheet reinforcement has higher reinforcing effect than only sheet reinforced specimens. However, the specimens that and fiber sheet attached after polyurea applied on showed that the high toughness of fiber sheet restrains the ductile behavior of Polyurea due to the high ductility, thereby the specimen suffers the concentration of load, which leads the brittle fracture behavior.

최근 국내에서는 고분자 화합물인 폴리우레아를 이용하여 보강 성능의 향상을 위한 연질형 폴리우레아를 개발하여 구조물에 적용하였지만 보강 성능은 미비한 것으로 나타났다. 따라서, 이 연구에서는 폴리우레아를 구조물의 보강재로 사용하기 위하여 연질형 폴리우레아의 구성 요소를 변화시켜 경질형 폴리우레아를 개발하였다. 개발된 경질형 폴리우레아는 연질형 폴리우레아에 비해 경도와 인장강도가 향상된 성능을 나타내었다. 경질형 폴리우레아를 일반 구조물의 보강재로 사용하기 위하여 RC 슬래브 시험체를 제작하여 보강 성능을 평가하였으며, 현재 보강재로 사용되는 섬유 시트와 적층하여 보강한 후 성능을 평가하였다. 실험 결과 경질형 폴리우레아만으로 보강한 시험체가 무보강 시험체보다 우수한 강성 증진 효과와 연성 증진 효과를 나타내는 것으로 나타났다. 또한, 섬유 시트를 부착한 후 경질형 폴리우레아를 외부에 도포하여 보강한 시험체는 섬유 시트만으로 보강한 시험체보다 보강 성능이 매우 우수한 것으로 나타났다. 그러나 경질형 폴리우레아를 도포한 후 섬유 시트를 부착한 시험체는 경질형 폴리우레아의 변형을 강성이 높은 섬유 시트가 억제하여 하중이 가해지며 생기는 응력이 한곳에 집중되어 취성적인 파괴 거동을 보이는 것으로 나타났다.

Keywords

References

  1. Chen, Z. F. and Wan, L. L., "Evaluzation of CFRP, GFRP, and BFRP Material Systems for the Strengthening of RC Slabs," Journal of Reinforced Plastices and Composites, Vol. 27, No. 12, 2008. pp. 1233-1243. https://doi.org/10.1177/0731684407084122
  2. Kim, H. J., "Blast Analysis of FRP-Retrofitted Concrete Structures Considering FRP Failure Mechanism," Doctoral Thesis, Yonsei University, Seoul, Korea, 2007, pp. 11-16.
  3. Buchan, P. A. and Chen, J. F., "Blast Resistance of FRP Composites and Polymer Strengthened Concrete and Masonry Structures-A State-of-the-Art Review," Composites Part B: Engineering, Vol. 38, No. 5-6, 2007, pp. 509-522. https://doi.org/10.1016/j.compositesb.2006.07.009
  4. Karbhari, V. M. and Seible, F., "Fiber Reinforced Composite-Advanced Materials for the Renewal of Civil Infrastructure," Applied Composite Materials, Vol. 7, Nos. 2-3, 2000, pp. 95-124. https://doi.org/10.1023/A:1008915706226
  5. Neale, K. W., "FRPs for Structural Rehabilitation: a Survey of Resent Progress," Progress in Structural Engineering and Materials, Vol. 2, No. 2, 2000, pp. 133-138. https://doi.org/10.1002/1528-2716(200004/06)2:2<133::AID-PSE16>3.0.CO;2-C
  6. Chen, J. F. and Teng, J. G., "Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete," ASCE Journal of Structural Engineering, Vol. 127, No. 1, 2001, pp. 784-791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784)
  7. Nanni, A., Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications, Elsevier, Science Publishers, Amsterdam, The Netherlands, 1993, 450 pp.
  8. ACI Committee 440, State-of-the-Art Report on Fiber Reinforced Plastic Reinforcement for Concrete Structure (ACI 440R-96), American Concrete Institute, Farmington Hills, Mich, 1996, 65 pp.
  9. ACI Committee 440H, Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-06), American Concrete Institute Committee 440, Farmington Hills, Mich., 2006, 44 pp.
  10. 김성배, 김장호, 최홍식, 허권, "RC 구조물 보강을 위한 고성능 폴리우레아의 개발 및 적용성 평가," 대한토목학회 논문집, 30권, 2A호, 2010, pp. 169-176.
  11. Hu, A., Yu, S., CI., Wang, Mingyu., Ma, Jun., and Liu, Kaixin., "Tribological Properties of Epoxy/Polyurea Composite," Polymers for Advanced Technologies, Vol. 20, No. 9, 2009, pp. 748-752. https://doi.org/10.1002/pat.1347
  12. Pu, H., Liu, T., Yang, Z. Mingyu, and Yuan, J., "Synthesis and Application of Polyurea," Polymer Materials Science and Engineering, Vol. 24, No. 7, 2008, pp. 1-5.

Cited by

  1. Performance of Combined Organic and Inorganic Hybrid Mortar as Repair Materials for Concrete Road Facilities vol.20, pp.6, 2018, https://doi.org/10.7855/IJHE.2018.20.6.109