DOI QR코드

DOI QR Code

Worker Exposure and Volatilization Pattern of Cadusafos, Ethoprophos and Probenazole after Applying Granular Type Formulation on Soil in Greenhouse

시설재배지에서 토양처리농약 Cadusafos, Ethoprophos와 Probenazole 입제 처리 후 휘산 양상과 농작업자 노출

  • Park, Byung-Jun (Chemical safety Division, National Academy of Agricultural Science, Rural Development Adminstration) ;
  • Lee, Ji-Ho (Chemical safety Division, National Academy of Agricultural Science, Rural Development Adminstration)
  • 박병준 (농촌진흥청 국립농업과학원) ;
  • 이지호 (농촌진흥청 국립농업과학원)
  • Received : 2011.03.30
  • Accepted : 2011.05.15
  • Published : 2011.06.30

Abstract

BACKGROUND: This study carried out to fate of pesticide and investigate worker exposure of pesticide in air after applying granular type pesticide formulation on soil in greenhouse for preventing farmer's pesticide intoxication. METHODS AND RESULTS: The recovery of pesticide, cadusafos, ethoprophos and probenazole on absorbent in air were ranged 80.9~121.1% in charcoal and 90.6~99.0% in XAD-4, respectively. Emission rate of in lysimeter was higher 3~5 times than that of pesticides from topsoil not added water at $35^{\circ}C$ plot after applying a mixture of granular formulation and soil. The ethoprophos concentration in air, 50 cm high from soil surface at greenhouse, was reached the highest 186.4 ${\mu}g/m^3$ within 13 hours and were ranged 17.8~186.4 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 150 g a.i./245 $m^2$. The cadusafos concentration in air at greenhouse was reached the highest 37.3 ${\mu}g/m^3$ within 39 hours and were ranged 10.0~37.3 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 180 g a.i./245 $m^2$. The probenazole concentration in air at greenhouse was reached the highest 1.45 ${\mu}g/m^3$ within 37 hours and were ranged 0.23~1.45 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 144 g a.i./245 $m^2$. CONCLUSION(s): The result of the reentry interval study demonstrated that reentry intervals for ethoprophos and cadusafos are longer than 48 hours.

시설재배지내의 밀폐공간에서 토양처리농약의 살포 후 농작업으로 작업자의 농약중독 우려가 상존하므로 농약중독예방 방지를 위해 살포농약의 휘산양상과 농작업자 노출량 산정 연구를 수행하였다. 흡착제를 이용한 공기 중 ethoprophos, cardusafos, probenazole의 회수율은 각각 charcoal 흡착제 80.9~121.1%, XAD-4 흡착제가 90.6~99.0% 수준으로 양호하였다. lysimeter에 토양을 혼화처리 한 후 온도별 농약의 휘산은 온도가 높을수록 휘산이 잘되었으며, 특히 수분이 존재 하는 $35^{\circ}C$조건에서는 ethoprophos의 경우 3~5배 휘산량이 증가하였다. 면적 245 $m^2$ 시설하우스 재배포장에서 ethoprophos 입제를 150 g (a.i.) 토양과 혼화처리하고 지면으로부터 50 cm 상층에서 처리 46시간까지 토양처리제인 ethoprophos의 휘산량은 17.8~186.4 ${\mu}g/m^3$이었다. 동일조건에서 cadusafos 180 g a.i./245 $m^2$ 약량을 처리했을 때 처리 39시간째에 최고 농도를 보였으며 46시간까지 공기중농도는 10.0~37.3 ${\mu}g/m^3$이었다. Probenazole은 144 g a.i./245 $m^2$ 약량을 처리했을 때 처리 37시간째에 최고 농도를 보였으며 46시간까지의 공기중 농도는 0.23~1.45 ${\mu}g/m^3$ 수준이었다. 약제처리 후 하우스내 공기중 농약성분의 최대잔류량은 13~39시간 사이에 최대잔류가 되었고 토양처리농약인 ethoprophos 입제와 cadusafos 입제는 휘산성이 높음으로 농작업자 재출입 기간은 살포 후 48시간 이후로 설정해야 할것이다.

Keywords

References

  1. Aden, K., Diekkruger, B., 2000. Modeling pesticide dynamics of four different sites using the model system SIMULAT. Agri. Water Manag. 44, 337-355. https://doi.org/10.1016/S0378-3774(99)00099-2
  2. Baker, L. W., Fitzell, D. L., 1996. Ambient air concentration of pesticides in califonia. Environ. Sci. Technol. 30, 1365-1368. https://doi.org/10.1021/es950608l
  3. Biljana, R.P., Vodeb, L.B., 2002. Determination of dazomet in basamid granulat using reversed phase HPLC, CCACAA. 75, 225-234.
  4. Seiber, J., N., McChesney, M. M., Woodrow, J. E., 1989. Airborne residues resulting from use of methyl parathion, molinate and thiobencarb on rice in the sacramento valley, California. USA. Environ.l Toxicol. Chem. 8, 577-588. https://doi.org/10.1002/etc.5620080705
  5. Ramsey, J.R., Andersen, M. E., 1984. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans, Toxicol. Appl. Pharmacol. 73, 159-175 https://doi.org/10.1016/0041-008X(84)90064-4
  6. Ross J. H., Dong, M. H., 1997. The use of probabilistic modeling to determine Reentry intervals, Operator exposure and agrochemicals. The Lensbury conference centre Teddington, Middlesex, UK
  7. Park, B. J., Choi, J. H., Kim, C. S., Im, G. J., Oh, B. Y. Shim, J. H., 2005. Volatilization of molinate in paddy rice ecosystem and its concentration in air causing phytotoxicity to chili pepper, Korean J. Pesti. Sci. 9, 70-80.
  8. Rudel, H., Schmidt, S., Kordel, W., Klein, W., 1993. Degradation of pesticide in soil-comparison of laboratory experiments in a biometer system and outdoor lysimeter experiments. Sci. the Total Environ. 132, 181-200. https://doi.org/10.1016/0048-9697(93)90131-O
  9. Woodrow, J. E., Seiber, J. N., 1997. Correlation techniques for estimating pesticide volatilization flux and downwind concentrations, Environ. Sci. Technol. 31, 523-529. https://doi.org/10.1021/es960357w
  10. Woodrow, J. E., Seiber, J. N., Dary, C., 2001. Predicting pesticide emission and downwind concentrations using correlation with estimated vapor pressures. J. Agric. Food Chem. 49, 3841-3846. https://doi.org/10.1021/jf010358u

Cited by

  1. Volatilization and Residues into Air, Soil, Plant of Insecticide Cadusafos and Tefluthrin in Greenhouse vol.21, pp.2, 2017, https://doi.org/10.7585/kjps.2017.21.2.175
  2. Volatilization of Sprayed Pesticides in Greenhouse using a Lysimeter vol.20, pp.4, 2016, https://doi.org/10.7585/kjps.2016.20.4.305
  3. Uptake of Boscalid and Chlorfenapyr Residues in Soil into Korean Cabbage vol.18, pp.4, 2014, https://doi.org/10.7585/kjps.2014.18.4.314
  4. A Review of Studies on the Farmer's Safety and Health in Korea on the ergonomic perspective vol.15, pp.7, 2014, https://doi.org/10.5762/KAIS.2014.15.7.4165