DOI QR코드

DOI QR Code

Effects of Dietary Protein and Threonine Supply on In vitro Liver Threonine Dehydrogenase Activity and Threonine Efficiency in Rat and Chicken

  • Lee, C.W. (Joint Research Center of Pusan National University-German Fraunhofer Institute for Interfacial Engineering and Biotechnology) ;
  • Oh, Y.J. (Joint Research Center of Pusan National University-German Fraunhofer Institute for Interfacial Engineering and Biotechnology) ;
  • Son, Y.S. (Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University) ;
  • An, W.G. (Joint Research Center of Pusan National University-German Fraunhofer Institute for Interfacial Engineering and Biotechnology)
  • Received : 2011.02.08
  • Accepted : 2011.06.22
  • Published : 2011.10.01

Abstract

This study was conducted to assess the relation between threonine (Thr) oxidation rate and threonine efficiency on rat and chicken fed with graded levels of protein and threonine. The increase in threonine content from 0.28 to 0.72% in a diet containing 12.0% crude protein (CP) caused a gradual increase in threonine dehydrogenase (TDG) activity in rat liver. Similar, but more pronounced results were observed after 18.0% CP in the diet. Both protein levels in combination with the highest level of threonine supplementation increased liver TDG activity significantly, indicating enhanced threonine catabolism. Parameters of efficiency of threonine utilization calculated from parallel nitrogen balance studies decreased significantly and indicated threonine oversupply after a maximum of threonine supplementation. At the lower levels of threonine addition the efficiency of threonine utilization was not significantly changed. In the chicken liver up to 0.60% true digestible threonine (dThr) in the 18.5% CP diet produced no effect on the TDG activity. However, TDG activity in the liver was elevated by the diet containing 22.5% CP (0.60% dThr) and the efficiency of threonine utilization decreased, indicating the end of threonine limiting range. In conclusion, the in vitro TDG activity in the liver of rat and growing chicken has an indicator function for the dietary supply of threonine.

Keywords

References

  1. Aguilar, T. S., N. J. Benevenga and A. E. Harper. 1974. Effect of dietary methionine level on its metabolism in rats. J. Nutr. 104:761-771.
  2. Aoyama, Y. and Y. Motokawa. 1981. L-Threonine dehydrogenase of chicken liver: purification, characterization and physiological significance. J. Biol. Chem. 256:12367-12373.
  3. Baker, D. H. and Y. Han. 1994. Ideal amino acid profile for chicks during the first three weeks posthatching. Poult. Sci. 73:1441-1447. https://doi.org/10.3382/ps.0731441
  4. Baker, D. H., M. Sugahara and H. M. Scott. 1968. The glycine-serine interrelationship in chick nutrition. Poult. Sci. 47:1376-1377. https://doi.org/10.3382/ps.0471376
  5. Ballevre, O., A. Cadenhead, A. G. Calder, W. D. Rees, G. E. Lobley, M. F. Fuller and P. J. Garlick. 1990. Quantitative partition of threonine oxidation in pigs, effect of dietary threonine. Am. J. Physiol. 259: E483-491.
  6. Bird, M. I. and P. B. Nunn. 1979. Glycine formation from L-threonine in intact isolated rat liver mitochondria. Biochem. Soc. Trans. 7:1276-1277.
  7. Bird, M. I. and P. B. Nunn. 1983. Metabolic homoeostasis of L-threonine in the normally-fed rat. Biochem. J. 214:687-694.
  8. Bird, M. I., P. B. Nunn and L. A. J. Lord. 1984. Formation of glycine and aminoacetone from L-threonine by rat liver mitochondria. Biochem. Biophys. Acta. 802:229-236. https://doi.org/10.1016/0304-4165(84)90166-1
  9. Bloxam, D. L. 1975. Restriction of hepatic gluconeogenesis and ureogenesis from threonine when at low concentrations. Am. J. Physiol. 229:1718-1723.
  10. Brookes, I. M., F. N. Owens and U. S. Garrigus. 1972. Influence of amino acid level in the diet upon amino acid oxidation by the rat. J. Nutr. 102:27-36.
  11. Chu, S. W. and D. M. Hegstedt. 1976. Adaptive response of lysine and threonine degrading enzymes in adult rats. J. Nutr. 106:1089-1096.
  12. Dale, R. A. 1978. Catabolism of threonine in mammals by coupling of L-threonine 3-dyhydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochem. Biophys. Acta. 544:496-503. https://doi.org/10.1016/0304-4165(78)90324-0
  13. Davis, A. J. and R. E. Austic. 1982. Threonine metabolism of chicks fed threonine-imbalanced diets. J. Nutr. 112:2177-2186.
  14. Davis, A. J. and R. E. Austic. 1994. Dietary threonine imbalance alters threonine dehydrogenase activity in isolated hepatic mitochondria of chicks and rats. J. Nutr. 124:1667-1677.
  15. Davis, A. J. and R. E. Austic. 1997. Dietary protein and amino acid levels alter threonine dehydrogenase activity in hepatic mitochondria of Gallus domesticus. J. Nutr. 127:738-744.
  16. Gahl, M. J., M. D. Finke, T. D. Crenshaw and N. J. Benevenga. 1991. Use of a four-parameter logistic equation to evaluate the response of growing rats to ten levels of each indispensable amino acid. J. Nutr. 121:1720-1729.
  17. Gebhardt, G. 1966. Die Bewertung der EiweiBqualitat von Nahrungs- und Futtermitteln mit Hilfe des N-Bilanzversuches. In: HOCK, A. (Hrsg.): Vergleichende Ernahrungslehre des Menschen und seiner Haustiere. Fischer Verlag, Jena, 228-348.
  18. Green, M. L. and W. H. Elliott. 1964. The enzymic formation of aminoacetone from threonine and its further metabolism. Biochem. J. 92:537-549.
  19. Horszczaruk, F. and H. D. Bock. 1963. Eine Modifikation des von K.Schiller vorgeschlagenen Stoffwechselkafigs fur Ratten. Z.Versuchstierkde. 2:126-131.
  20. Inoue, H. and H. C. Pitot. 1970. Regulation of the synthesis of serine dehydratase isozymes. Adv. Enz. Regul. 8:289-296. https://doi.org/10.1016/0065-2571(70)90024-5
  21. Ishikawa, K., N. Higashi, T. Nakamura, T. Matsuura and A. Nakagawa. 2007. The first crystal structure of L-Threonine Dehydrogenase. J. Mol. Biol. 366:857-867. https://doi.org/10.1016/j.jmb.2006.11.060
  22. Kang-Lee, Y. A. and A. E. Harper. 1978. Threonine metabolism in vivo effect of threonine intake and prior induction of threonine dehydratase in rats. J. Nutr. 108:163-175.
  23. Kim, K. I., I. Mc Millan and H. S. Bayley. 1983. Determination of amino acid requirements of young pigs using an indicator amino acid. Br. J. Nutr. 50:369-382. https://doi.org/10.1079/BJN19830104
  24. Lee, C. W. and F. Liebert. 2001. Comparative study about the effect of protein supply on in vitro threonine dehydrogenase activity in the liver of laboratory rats and chickens. Proc. Soc. Nutr. Physiol. 10:85.
  25. Le Floc'h, N., C. Obled and B. Seve. 1996. In vivo threonine oxidation in growing pigs fed on diets with graded levels of threonine. Br. J. Nutr. 75:825-837. https://doi.org/10.1079/BJN19960189
  26. Le Floc'h, N., B. Seve and Y. Henry. 1994. The addition of glutamic acid or protein to a threonine-deficient diet differentially affects growth performance and threonine dehydrogenase activity in fattening pigs. J. Nutr. 124:1987-1995.
  27. Levesque, C. L., S. Moehn, P. B. Pencharz and R. O. Ball. 2011. The threonine requirement of sows increases in late gestation. J. Anim. Sci. 89:93-102. https://doi.org/10.2527/jas.2010-2823
  28. Liebert, F. and G. Gebhardt. 1979. N-Bilanzuntersuchungen zur Verwertung von DL-Threonin und DL-Tryptophan an Broilerküken. Arch. Tierernahr. 29:581-588. https://doi.org/10.1080/17450397909423315
  29. Liebert, F. and G. Gebhardt. 1980. Beziehungen zwischen Lysinkonzentration und Kenndaten der EiweiB- und Aminosaureverwertung beim Broilerkuken. Arch. Tierernahr. 30:469-478. https://doi.org/10.1080/17450398009430894
  30. Liebert, F., H. Le Khac and G. Gebhardt. 1987. Ergebnisse zur Wirksamkeit und zum Bedarf an ausgewahlten Aminosauren beim wachsenden weiblichen Schwein. 3.Threonin. Arch. Anim. Nutr. 37:407-416.
  31. Liebert, F. 1995. Methodische Untersuchungen zur Beurteilung von Lysinverwertungskennzahlen von Schweinen nach extremen Veranderungen von Proteinmenge und - zusammensetzung. Arch. Anim. Nutr. 48:319-327.
  32. Liebert, F. 2008. Modelling of protein metabolism yields amino acid requirements dependent on dietary amino acid efficiency, growth response, genotype and age of growing chicken. Avian Biology Research 1:101-110. https://doi.org/10.3184/175815508X388074
  33. Mauzerall, D. and S. Granick. 1956. The occurrence and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219:435-446.
  34. McGilvray, D. and J. G. Morris. 1969. Utilization of L-threonine by a species of Arthrobacter; A novel catabolic role for aminoacetone synthase. Biochem. J. 112:657-671.
  35. Moughan, P. J. and M. F. Fuller. 2003. Modelling amino acid metabolism and the estimation of amino acid requirements. In: Amino acids in animal nutrition (Ed. J. P. F. D´Mello), CABI Publ., Cambridge, 187-202.
  36. Rees, W. D., S. M. Hay and C. Antipatis. 2006. The effect of dietary protein on the amino acid supply and threonine metabolism in the pregnant rat. Reprod. Nutr. Dev. 46:227-239. https://doi.org/10.1051/rnd:2006015
  37. Rimbach, M. and F. Liebert. 2000. Ergebnisse zum altersabhangigen Threoninbedarf aktueller Broilergenotypen. Proc. Soc. Nutr. Physiol. 9:106.
  38. Samadi and F. Liebert. 2006. Estimation of nitrogen maintenance requirement and potential for nitrogen deposition in fast growing chickens depending on age and sex. Poult. Sci. 85:1421-1429. https://doi.org/10.1093/ps/85.8.1421
  39. Samadi and F. Liebert. 2007. Threonine requirement of slow-growing male chickens depends on age and dietary efficiency of threonine utilization. Poult. Sci. 86:1140-1148. https://doi.org/10.1093/ps/86.6.1140
  40. Sartori, A., H. M. Garay-Malpartida, M. F. Forni, R. I. Schumacher, F. Dutra, M. C. Sogayar and E. J. H. Bechara. 2008. Aminoacetone, a putative endogenous source of methylglyoxal, causes oxidative stress and death to insulinproducing RINm5f cells. Chem. Res. Toxicol. 21:1841-1850. https://doi.org/10.1021/tx8001753
  41. Schneider, W. C. and G. H. Hogeboom. 1950. Intracellular distribution of enzymes. V. Further studies on the distribution of cytochrome c in rat liver homogenates. J. Biol. Chem. 183:123-128.
  42. van der Sluis, M., M. W. Schaart, B. A. de Koning, H. Schierbeek, A. Velcich, I. B. Renes and J. B. van Goudoever. 2009. Threonine metabolism in the intestine of mice: loss of mucin 2 induces the threonine catabolic pathway. J. Pediatr. Gastroenterol. Nutr. 49(1):99-107. https://doi.org/10.1097/MPG.0b013e3181a23dbe
  43. Thong, H. T. and F. Liebert. 2004: Potential for protein deposition and threonine requirement of modern genotype barrows fed graded levels of protein with threonine as limiting amino acid. J. Anim. Physiol. A. Anim. Nutr. 88:196-203. https://doi.org/10.1111/j.1439-0396.2004.00457.x
  44. Urata, G. and S. Granick. 1963. Biosynthesis of $\alpha$-aminoketones and the metabolism of aminoacetone. J. Biol. Chem. 238:811-820.
  45. Wecke, C. and F. Liebert. 2010. Optimal dietary lysine to threonine ratio in pigs (30-110 kg BW) derived from observed dietary amino acid efficiency. J. Anim. Physiol. A. Anim. Nutr. 94:e277-285. https://doi.org/10.1111/j.1439-0396.2009.00969.x
  46. Yamashita, K. and K. Ashida. 1971. Effect of excessive levels of lysine and threonine on the metabolism of these amino acids in rats. J. Nutr. 101:1607-1614.

Cited by

  1. Influence of Protein Supply on Threonine Efficiency and Threonine Catabolism in Hepatic Mitochondria of Chicks and Rats vol.16, pp.1, 2016, https://doi.org/10.1515/aoas-2015-0066