Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 1. Effects of Photocatalyst and Water-back-flushing Condition

세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 1. 광촉매 및 물역세척 조건의 영향

  • Cong, Gao-Si (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin-Yong (Institute of Energy & Environment, Hallym University)
  • 고사총 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 에너지.환경연구소)
  • Received : 2011.04.23
  • Accepted : 2011.05.30
  • Published : 2011.06.30

Abstract

The effects of $TiO_2$ photocatalyst coating bead concentration, water-back-flushing period (FT), and back-flushing time (BT) were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for advanced drinking water treatment in this study. Photocatalyst coating bead concentration was changed in the range of 10~40 g/L, FT in 2~10 min and BT in 6~30 sec. Then, we observed the effects on resistance of membrane fouling $(R_f)$, permeate flux (J) and total permeate volume $(V_{\Upsilon})$ during total filtration time of 180 min. As decreasing photocatalyst coating bead concentration, $R_f$ increased and J decreased. $V_{\Upsilon}$ was the highest value of 8.85 L at 40 g/L of photocatalyst coating bead concentration. At FT change experiment, $R_f$ decreased and J increased as decreasing FT. Then $R_f$ decreased and J increased according to increasing BT at BT change experiment. Because at NBF (no back-flushing) dramatic membrane fouling reduced membrane pore size, turbid and dissolved organic matters ($UV_{254}$ absorbance) could be removed efficiently. Therefore, treatment efficiencies of turbidity and dissolved organic matters were the highest at NBF. Then by cleaning effect of photocatalyst coating bead, the treatment efficiencies of turbidity and dissolved organic matters increased as decreasing FT and increasing BT.

본 연구에서는 정수처리용 세라믹 한외여과 및 광촉매의 혼성공정에서 $TiO_2$ 광촉매 코팅 구(bead)의 농도 및 물역세척 주기(FT), 물역세척 시간(BT) 변화의 영향을 알아보았다. 광촉매 코팅 구의 농도는 10~40 g/L로, FT는 2~10분으로, BT는 6~30초로 변화시키면서, 그 영향을 180분 운전 후 막오염에 의한 저항$(R_f)$, 투과선속(J)과 총여과부피$(V_T)$ 측면에서 고찰하였다. 광촉매 코팅 구의 농도가 감소할수록 $R_f$는 증가하고 J는 감소하였다. 광촉매 코팅 구의 농도 40 g/L 에서 $V_T$가 8.85 L로 가장 높았다. FT 변화 실험에서는 FT가 감소할수록, $R_f$는 감소하고 J는 증가하였다. 한편, BT 변화 실험에서는 BT가 증가할수록, $R_f$는 감소하고 J는 증가하였다. 또한, NBF(no back-flushing)에서 급격한 막오염에 의한 분리막 기공의 감소로 탁도 및 용존유기물($UV_{254}$ 흡광도)이 효과적으로 제거되었기 때문에, 탁도 및 용존유기물의 처리효율이 NBF 조건에서 가장 높았다. 한편, 광촉매 코팅 구의 세척 효과로 FT가 감소할수록, BT가 증가할수록 탁도 및 용존유기물의 처리효율은 증가하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_2$ photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted depositionmethod and their self-cleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003).
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. H. C. Oh, "Photocatalytic degradation characteristics of organic matter by highly pure $TiO_2$ nano-crystals", Master Dissertation, Kangwon National Univ., Chuncheon, Korea (2006).
  5. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
  6. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  7. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  8. T. H. Bae and T. M. Tak, "Effect of $TiO_2$ nano-particles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249, 1 (2005). https://doi.org/10.1016/j.memsci.2004.09.008
  9. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  10. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  11. M. H. Kim and J. Y. Park, "Effect of periodic water-back-flushing in the tubular carbon ceramic ultrafiltration system on membrane fouling control for paper wastewater recycle", Membrane Journal, 11, 190 (2001).
  12. M. Cheryan, "Ultrafiltration Handbook", Technomic Pub. Co, Lancater, PA (1984).
  13. K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Sep. Pur. Tech., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  14. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  15. S. M. Bai, "Preparation and photoactivity evaluation of $TiO_2$ added metal for removal of VOC in autombile indoor air", Master Dissertation, Hongik Univ., Seoul, Korea (2007).
  16. J. K. Kim, H. J. Jung, and B. H. Koo, "A study of dye wastewater treatment using $TiO_2$ photocatalyst", Proceedings of Fall Conference of Korean Society of Environmental Engineers, 826 (2003).
  17. H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
  18. J. H. Park, "Technology and applications of ceramic membranes", NICE, 21, 33 (2003).
  19. S. H. Hyun, "Present status and preparation technology of ceramic membranes", Membrane Journal, 3, 1 (1993).
  20. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_2$-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2004).
  21. J. Y. Park and S. H. Lee, "Effect of water-back-flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  22. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and $O_3/GAC$", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  23. H. C. Lee, J. H. Cho, and J. Y. Park, "Effect of water-back-flushing time and period in advanced water treatment system by ceramic microfiltration", Membrane Journal, 18, 26 (2008).