Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module

중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제

  • Koh, Hyung-Chul (School of Materials Science and Engineering, Enginnering Research Institute, Gyeongsang National University) ;
  • Ha, Seong-Yong (Airrane Co. Ltd.) ;
  • Woo, Seung-Moon (School of Materials Science and Engineering, Enginnering Research Institute, Gyeongsang National University) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Enginnering Research Institute, Gyeongsang National University) ;
  • Lee, Byung-Seong (Airrane Co. Ltd.) ;
  • Lee, Chung-Seop (Airrane Co. Ltd.) ;
  • Choi, Whee-Moon (Environmental Engineering, School of Engineering, Ajou University)
  • 고형철 (경상대학교 나노신소재공학과 공학연구원) ;
  • 하성용 ((주)에어레인) ;
  • 우승문 (경상대학교 나노신소재공학과 공학연구원) ;
  • 남상용 (경상대학교 나노신소재공학과 공학연구원) ;
  • 이병성 ((주)에어레인) ;
  • 이충섭 ((주)에어레인) ;
  • 최휘문 (아주대학교 환경공학과)
  • Received : 2011.06.21
  • Accepted : 2011.06.23
  • Published : 2011.06.30

Abstract

Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

바이오 가스의 분리와 정제를 위해 셀룰로오스 트리아세테이트(CTA) 고분자를 이용하여 중공사형 기체분리막을 상분리법에 의해 제조하고, 제조된 기체분리막을 사용하여 유효 막면적이 0.17 $m^2$인 중공사형 기체분리막 모듈을 제조하였다. 제조된 기체분리막 모듈의 순수 기체투과도틀 메탄, 산소, 이산화탄소에 대하여 측정하였다. 메탄의 투과도는 평균 0.46 GPU를 나타내었으며, 이산화탄소의 투과도는 평균 18.52 GPU였으며 이때 ${\alpha}CO_2$/$CH_4=40.4$를 나타내어 매우 높은 선택도를 나타내었다. 순수 가스 투과 테스트 후 혼합 가스에 대한 분리 정제 테스트를 4가지 모사가스에 대하여 진행하였으며 1 stage, 2 stage, 3 stage로 기체분리막 모듈을 구성하여 stage cut의 변화에 따른 각 부분에서 발생되는 기체의 농도 및 유량을 측정하였다. 1 stage에서는 stage cut이 상승함에 따라 메탄의 농도가 상승하는 것을 알 수 있었으며, 메탄 회수 효율은 떨어지는 것을 알 수 있었다. 2 stage 테스트에서는 1 stage와 유사한 거동을 보이는 것을 알 수 있었으며 메탄의 회수 효율은 1 stage보다 상승하는 것을 알 수 있었다. 바이오 가스 내에 존재하는 메탄의 손실을 줄이기 위해 3 stage 테스트를 진행하였으며, 그 결과 메탄가스의 손실율을 5% 이내로 줄일 수 있는 모듈의 배열을 찾아내었다.

Keywords

References

  1. A. Car, C. Stropnik, W. Yave, and K. Peinemann, "Pebax/polyethylene glycol blend thin film composite membranes for $CO_2$ Separation : performance with mixed gases", Sep. Purif. Technol., 62, 110-117 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  2. V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  3. V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Part B, 37, 2463 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H
  4. S. Basu, A. L. Khan, A. Cano-Odena, C. Liu, and I. F. J. Vankelecom, Chem. Soc. Rev., 39, 750 (2010). https://doi.org/10.1039/b817050a
  5. S. A. Stern, "Polymers for gas separation : the next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  6. L. M. Robeson, "Polymer membranes for gas separation", Curr. Opin. Solid State Mater. Sci., 4, 549 552 (1999). https://doi.org/10.1016/S1359-0286(00)00014-0
  7. S. S. Kapdi, V. K. Vijay, S. K. Rajesh, and R. Prasad, "Biogas scrubbing, compression and storage: perspective and prospectus in Indian context", Renew. Energy, 30, 1195 (2005). https://doi.org/10.1016/j.renene.2004.09.012
  8. L. V. A. Truong and N. Abatzoglou, "A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector", Biommass and Bioenergy, 29, 142 (2005). https://doi.org/10.1016/j.biombioe.2005.03.001
  9. A. A. A. C. Esteves, M. S. S. Lopes, P. M. C Nunes, and J. P. B. Mota, "Adsorption of natural gas and biogas components on active carbon", Sep. Purif. Technol., 62, 281 (2008). https://doi.org/10.1016/j.seppur.2008.01.027
  10. W. H. Lin and T. S. Chung, "Gas permeability, diffusivity, solubility and aging characteristics of 6FDA-durene polyimide membranes", J. Membr. Sci., 186, 183 (2001). https://doi.org/10.1016/S0376-7388(01)00333-7
  11. R. W. Baker, "Membrane Technology and Applications", McGraw-Hill, New York, 301-392 (2000).
  12. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 1393 (2002).
  13. H. Lin and B. D. Freeman, "Gas solubility, diffusivity and permeability in poly(ethylene oxide)", J. Membr. Sci., 239, 105 (2004). https://doi.org/10.1016/j.memsci.2003.08.031
  14. D. L. Ellig, J. B. Althouse, and F. P. McCandless, "Concentration of methane from mixtures with carbon dioxide by permeation through polymeric films", J. Membr. Sci., 6, 259 (1980). https://doi.org/10.1016/S0376-7388(00)82167-5
  15. D. R. Paul and Yu. P. Yampol'skii, "Polymeric Gas Separation Membranes", CRC Press, BocaRaton (1994).
  16. Y. Osada and T. Nakagawa, "Membrane Science and Technology", Marcel Dekker, NewYork (1992).
  17. K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, "Gas Permeation Properties of Poly ether imide segmented copolymer", Macromolecules, 29, 6990 (1995).
  18. S. W. Yoon, B. S. Lee, B. S. Lee, S. I. Cheong, and J. W. Rhim, "Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes", Membrane Journal, 19, 237 (2009).
  19. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA", Membrane Journal, 21, 98 (2010).
  20. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane", Membrane Journal, 20, 304 (2010).
  21. I. Pinnau and B. D. Freeman, "Formation and modification of polymeric membranes", American chemical society, washington, DC, Membr. Sci., 744, 1 (1999).
  22. M. Dr. Heinz-Joachim, and F. Elizabeth, "Modified membrane", Australian patent office AU2002214802B2, 0725 (2002).
  23. J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effeet of pore size distribution and air flux on mass transport in direct contact membrane distillation", J. Membr. Sci., 215, 75 (2003). https://doi.org/10.1016/S0376-7388(02)00603-8