DOI QR코드

DOI QR Code

Power Maximization of a Heat Engine Between the Heat Source and Sink with Finite Heat Capacity Rates

유한한 열용량의 열원 및 열침 조건에서 열기관의 출력 극대화

  • Baik, Young-Jin (New and Renewable Energy Department, Korea Institute of Energy Research(KIER)) ;
  • Kim, Min-Sung (New and Renewable Energy Department, Korea Institute of Energy Research(KIER)) ;
  • Chang, Ki-Chang (New and Renewable Energy Department, Korea Institute of Energy Research(KIER)) ;
  • Lee, Young-Soo (New and Renewable Energy Department, Korea Institute of Energy Research(KIER)) ;
  • Ra, Ho-Sang (New and Renewable Energy Department, Korea Institute of Energy Research(KIER))
  • 백영진 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 김민성 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 장기창 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 이영수 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 라호상 (한국에너지기술연구원 신재생에너지연구본부)
  • Received : 2011.06.11
  • Published : 2011.08.10

Abstract

In this study, the theoretical maximum power of a heat engine was investigated by sequential Carnot cycle model, for a low-grade heat source of about $100^{\circ}C$. In contrast to conventional approaches, the pattern search algorithm was employed to optimize the two design variables to maximize power. Variations of the maximum power and the optimum values of design variables were investigated for a wide range of UA(overall heat transfer conductance) change. The results show that maximizing heat source utilization does not always maximize power.

Keywords

References

  1. Bertani, R., 2010, Geothermal power generation in the world 2005-2010 Update Report, Proceedings World Geothermal Congress 2010, Bali, Indonesia.
  2. Odum, H., 2000, Emergy evaluation of an OT EC electrical power system, Energy, Vol. 25, No. 4, pp. 389-393. https://doi.org/10.1016/S0360-5442(99)00076-6
  3. Garcia-Rodriguez, L. and Blanco-Galvez, J., 2007, Solar-heated Rankine cycles for water and electricity production:POWERSOL project, Desalination, Vol. 212, No. 1-3, pp. 311-318. https://doi.org/10.1016/j.desal.2006.08.015
  4. Madhawa Hettiarachchi, H., Golubovic, M., Worek, W. and Ikegami, Y., 2007, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy, Vol. 32, pp. 1698-1706. https://doi.org/10.1016/j.energy.2007.01.005
  5. Dai, Y., Wang, J. and Gao, L., 2009, Parametric optimization and comparative study of organic Rankine cycle(ORC) for low grade waste heat recovery, Energy Conversion and Management, Vol. 50, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  6. Ondrechen, M., Anderson, B., Mozurkewich, M. and Berry, R., 1981, Maximum work from a finite reservoir by sequential Carnot cycles, Am. J. Phys., Vol. 49, pp. 681-685. https://doi.org/10.1119/1.12426
  7. Ibrahim, O. M., Klein, S. A. and Mitchell, J. W., 1991, Optimum heat power cycles for specified boundary conditions, J. Eng. Gas Turbines Power, Vol. 113, pp. 514-521. https://doi.org/10.1115/1.2906271
  8. Ibrahim, O. M. and Klein, S. A., 1996, Absorption power cycle, Energy, Vol. 21, pp. 21-27. https://doi.org/10.1016/0360-5442(95)00083-6
  9. Lewis, R. M. and Torczon, V., 2002, A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds, SIAM Journal on Optimization, Vol. 12, pp. 1075-1089. https://doi.org/10.1137/S1052623498339727
  10. Genetic Algorithm and Direct Search Toolbox 2 for MATLAB user's guide, 2007, The Math Works Inc.
  11. Aneke, M., Agnew, B. and Underwood, C., 2011, Performance analysis of the Chena binary geothermal power plant, Applied Thermal Engineering, Vol. 31, pp. 1825-1832. https://doi.org/10.1016/j.applthermaleng.2011.02.028
  12. Mlcak, H., Mirolli, M., Hjartarson, H., and Ralph, M., 2002, Notes from the North:a Report on the Debut Year of the 2 MW Kalina Cycle Geothermal Power Plant in Husavik, Iceland, Geothermal Res. Council Trans. Vol. 26, pp. 715-718.
  13. MATLAB Version R2009a, 2009, The Math Works Inc.