DOI QR코드

DOI QR Code

The Effect of Intravenous Injection of the Water Extract of Angelica gigas Nakai on Gliosis in the Middle Cerebral Artery Occlusion Rats

당귀 추출물 정맥 주사가 Middle Cerebral Artery Occlusion 모델 흰쥐에서 Gliosis 억제에 미치는 영향

  • Song, Bong-Keun (Department of Internal Medicine, Wonkwang University College of Oriental Medicine) ;
  • Jeon, Yong-Cheol (Department of Internal Medicine, Wonkwang University College of Oriental Medicine) ;
  • Kim, Sun-Ae (Department of Clinical Laboratory, Wonkwang University Medical Center) ;
  • Shim, An-Na (Department of Clinical Laboratory, Wonkwang University Medical Center) ;
  • Seong, Kee-Moon (Department of Internal Medicine, Wonkwang University College of Oriental Medicine) ;
  • Lee, Eon-Jeon (Department of Internal Medicine, Wonkwang University College of Oriental Medicine)
  • 송봉근 (원광대학교 한의과대학 신계내과학교실) ;
  • 전용철 (원광대학교 한의과대학 신계내과학교실) ;
  • 김선애 (원광대학교 광주한방병원 임상실험실) ;
  • 심안나 (원광대학교 광주한방병원 임상실험실) ;
  • 성기문 (원광대학교 한의과대학 신계내과학교실) ;
  • 이언정 (원광대학교 한의과대학 신계내과학교실)
  • Received : 2010.10.19
  • Accepted : 2011.08.31
  • Published : 2011.09.30

Abstract

Objectives : Gliosis becomes physical and mechanical barrier to axonal regeneration. Reactive gliosis induced by middle cerebral artery occlusion is involved with up-regulation of CD81 and GFAP (Glial fibrillary acidic protein). The current study is to examine the effect of the Angelica gigas Nakai(intravenous injection. 100 mg/kg twice in a day) on CD81 and GFAP of the rat in the brain after middle cerebral artery occlusion. Methods : Cerebral infarction was induced by middle cerebral artery occlusion. And after intravenous injection of water extract of Angelica gigas Nakai, the size of cerebral infarction was measured. Examination of optical microscope were also used to detect the expression of CD81 and GFAP in the brain of the rat. Results : The following results were obtained : We found that size of cerebral infarcion induced by MCAO (Middle Cerebral Artery Occlusion) in rats were decreased after intravenous injection of Angelica gigas Nakai. We injected the extract of Angelica gigas Nakai to the MCAO in rats, and the optical microscope study showed that Angelica gigas Nakai had effect on protecting the cells of hippocampus. We found that GFAP, CD81 and ERK of the brain in rats with cerebral infarction after MCAO were meaningfully decreased after intravenous injecting Angelica gigas Nakai. We found that c-Fos expression of the brain in rats with cerebral infarction after MCAO were significantly increased after intravenous injecting Angelica gigas Nakai. Conclusions : These results indicate that Angelica gigas Nakai could suppress the reactive gliosis, which disturbs the astrocyte regeneration in the brain of the rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. And the effect may be modulated by the up-regulation of c-Fos and ERK.

Keywords

References

  1. The Korean Society of Pathologists. Pathology. Seoul: Komoonsa. 1990:1261-2.
  2. Statistics Korea. The cause of death statistics 2009.2009:6-12.
  3. Anders JJ, Hurlock JA. Transplanted glial scar impedes olfactory bulb reinnervation. Exp Neurol. 1996;142(1):144-50. https://doi.org/10.1006/exnr.1996.0185
  4. Bahr M, Przyrembel C, Bastmeyer M. Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol. 1995;131(2):211-20. https://doi.org/10.1016/0014-4886(95)90043-8
  5. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11(11):3398-411. https://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
  6. Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58(9):1189-205. https://doi.org/10.1007/PL00000933
  7. Song BK, Geisert GR, Vazquez-Chona F, Geisert EE Jr. Temporal regulation of CD81 following retinal injury in the rat. Neurosci Lett. 2003;338(1):29-32. https://doi.org/10.1016/S0304-3940(02)01364-2
  8. Hemler ME. Specific tetraspanin functions. J. Cell Biol. 2001;155(7):1103-8. https://doi.org/10.1083/jcb.200108061
  9. Levy S, Todd SC, Maecker HT. CD81 (TAPA-1): A molecule involved insignal transduction and cell adhesion in the immune system. Annu Rev Immunol. 1998;16:89-109. https://doi.org/10.1146/annurev.immunol.16.1.89
  10. Lee SI. Ahn DG, Shin MG. Clincal Application of Herbal Medicine. Seoul: Traditional Medicine Research Center. 1993:357-58.
  11. Son SY. Shennong Ben Cao Jing. Taipei: Wungwang Publishing Co. 1971:24.
  12. Herbology Professors Association. Clinical Herbology. Seoul: Younglimsa. 1995:578-80.
  13. Li SZ. Ben Cao Gang Mu. Beijing: People's Medical Publishing House. 1982:833-37.
  14. Jung JU. Neuroprotective effect of Angelica gigas on focal cerebral infarction in the mouse. Gyungsan University Graduate School. Dissertation for Master Degree. 2000.
  15. Jun YY, Park CS, Park CG. An experimental study of effect on brain damage and neuroprotective effect of Angelicae gigantis radix extract against cerebral ischemia in rats. The Korean Journal of Herbology. 2003;18(4):25-35.
  16. Han SG, Lee BL. Effects of Angelica gigas Nakai herbal acupuncture into Hyolhae(SP10) of brain ischemic injury induced by Intraluminal Filament insertion in the rats. The journal of Korean acupuncture and moxibustion society. 2004;21(2):1-20.
  17. Lee SH, Moon SJ, Shin JB, Hae RK, Seong KM, Yag JH, Song BK. The Effect of the Water Extract of Angelica Sinens on Gliosis Repression of Astrocyte after Hypoxic injury. J Korean Oriental Med 2008;29(1):167-178.
  18. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1):84-91. https://doi.org/10.1161/01.STR.20.1.84
  19. Zou S. Ben Jing Shu Zheng. Seoul:Daesung Medical. 2001:240-5.
  20. Xu SN, Niu BZ. Chinese Traditional Medical Books Translation: Shennong Ben Cao Jing. Hebei:Hebei Science Technology Publising Co. 1997:68.
  21. Oh MC, Ahn KS, Kim KH. Effects of Astragali Radix and Angelicae gigantis Radix on Immune Response in Mice. Journal of Kyunghee University Oriental Medical School. 1986;9(1):343-54.
  22. Hann CK, Ahn DK. A Study on the Decursin content of Dang-Gwi and it's Effect on the Hematopoiesis in Anemic Rabbit. Journal of Kyung hee University Oriental Medical School. 1983;6(1):153-67.
  23. Bradley RR, cuunniff PJ, Pereira BJ. Hemoatopoietic effect of Radix angelicase sinensis in a hemodialysis patient. Am J Kidney Dis. 1999;34(2):349-54. https://doi.org/10.1016/S0272-6386(99)70367-7
  24. Liao JF, Jan YM, Huang SY, Wang HH, Yu LL, Chen CF. Evaluation With receptor binding assay on the water extracts of ten-active herbal drugs. Proc Natl Sci Counc Repub China B. 1995;19(3):151-58.
  25. Hu H, Hang B, Wang P. Anti-inflammatory effect of radix Angelicase sinensis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih. 1999;16(11):684-86, 704.
  26. Sung IH, Chae WS. The effect of Aquaacupuncture of Radix Corydalis and Radix Angelica in endotoxin induced thrombosis in mice. The journal of Korean acupuncture and moxibustion society. 1994;11(1):392-404.
  27. Kim GS, Kim MD, Kim Y, Kim JH, Kim JH, Lee WC, Lim YG, Jung CG. Practical Clinical Guide for Western and Oriental Medicine. Seoul: Jung Dam Books. 2001;3:22-30.
  28. Berry M, Maxwell WL, Logan A, Mathewson A, McConnell P, Ashhurst DE, Thomas GH. Deposition of scar tissue in the central nervous system. Acta Neurochir Suppl. 1983;32:31-5. https://doi.org/10.1007/978-3-7091-4147-2_3
  29. Fawcett JW, Asher RA. The glial scar and CNS repair. Brain Res Bull. 1999;49(6):377-91. https://doi.org/10.1016/S0361-9230(99)00072-6
  30. Asher RA, Fidler PS, Morgenstern DA, Adcock KH, Oohira A, Rogers JH, Fawcett JW. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci. 2000;20(7):2427-38. https://doi.org/10.1523/JNEUROSCI.20-07-02427.2000
  31. Moon LD, Brecknell JE, Franklin RJ, Dunnett SB, Fawcett JW. Robust regeneration of CNS axons through a track depleted of CNS glia. Exp Neurol. 2000;161(1):49-66. https://doi.org/10.1006/exnr.1999.7230
  32. Fidler PS, Schuette K, Asher RA, Dobberton A, Thornton SR, Calle-Patino Y, Muir E, Levine JM, Geller HM, Rogers JH, Faissner A, Fawcett JW. Comparing astrocytic cells lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan in NG2. J Neurosci. 1999;19(20):8778-88. https://doi.org/10.1523/JNEUROSCI.19-20-08778.1999
  33. Guth L, Albuquerque EX, Deshpande SS, Barrett CP, Donati EJ, Warnick JE. Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 1980;52(1):73-86. https://doi.org/10.3171/jns.1980.52.1.0073
  34. Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20(2):519-30.
  35. Gimenez Y, Ribotta M, Rajaofetra N, Morin-Richaud C, et al. Oxysterol(7beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res. 1995;41(1):79-95. https://doi.org/10.1002/jnr.490410110
  36. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999;16(10):851-63. https://doi.org/10.1089/neu.1999.16.851
  37. Puchala E, Windle WF. The possibility of structural and functional restitution after spinal cord injury. A review Exp Neurol. 1977;55(1):1-42. https://doi.org/10.1016/0014-4886(77)90155-8
  38. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one-years (1969-2000). Neurochemical Res. 2000;25(9-10):1439-51. https://doi.org/10.1023/A:1007677003387
  39. Sarthy V, Ripps H. The Retinal muller cell-structure and Function. Kluwer Academic/Plenum Press, New york, NY. 2001.
  40. Menet V, Gimenez Y, Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia. 2000;31(3):267-72. https://doi.org/10.1002/1098-1136(200009)31:3<267::AID-GLIA80>3.0.CO;2-N
  41. Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendhl U, Betsholtz C, Berthold CH, Frisen J. Abnormal reation to central nervous system injury to central nervous system injury in mice lacking glial fibrilary acidic protein and vimentin. J Cell Biol. 1999;145:503-14. https://doi.org/10.1083/jcb.145.3.503
  42. Kwon OK. Alteration of recovery of motor function and glial fibrillary acidic protein (GFAP) after spinal cord injury (SCI) in the rats. Gradutae School of Konkuk University. 2003.
  43. Eddelstone M, Mucke L. Molecular profiles of reactive astrocytes-implication for their role neurologic disease. Neruosci. 1993;54(3):1536.
  44. Schick MR, Nguyen VQ, Levy S. Anti-TAPA-1 antibodies induce protein tyrosine phosphorylation that is prevented by increasing intracellular thiol levels. J Immunol. 1993;151(4):1918-25.
  45. Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem. 1997;272(5):2595-98. https://doi.org/10.1074/jbc.272.5.2595
  46. Yauch RL, Hemler ME. Specific interactions among transmembrane 4 superfamily(TM4SF) proteins and phosphoinositide 4-kinase. Biochem J. 2000;351(3):629-37. https://doi.org/10.1042/0264-6021:3510629
  47. Oren, R, Takahashi, S, Doss C, Levy R, Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990;10(8):4007-15. https://doi.org/10.1128/MCB.10.8.4007
  48. Geisert EE Jr, Yang L, Irwin MH. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J Neurosci. 1996;16(17):5478-87. https://doi.org/10.1523/JNEUROSCI.16-17-05478.1996
  49. Kelic S, Levy S, Suarez C, Weinstein DE. CD81 regulates neuron-induced astrocyte cell-cycle exit. Mol Cell Neurosci. 2001;17(3):551-60. https://doi.org/10.1006/mcne.2000.0955
  50. Geisert EE Jr, Williams RW, Geisert GR, Fan L, Asbury AM, Maecker HT, Deng J, Levy S. Increased brain size and glial cell number in CD81-null mice. J Comp Neurol. 2002;453(1):22-32. https://doi.org/10.1002/cne.10364
  51. Dijkstra S, Duis S, Pans IM, Lankhorst AJ, Hamers FP, Veldman H, Bar PR, Gispen WH, Joosten EA, Geisert EE Jr. Intraspinal administration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol. 2006;202(1):57-66. https://doi.org/10.1016/j.expneurol.2006.05.011
  52. Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol. 1997;50(2-3):83-107. https://doi.org/10.1016/S0301-0082(96)00021-4
  53. Onodera H, Kogure K, Ono Y, Igarishi K, Kiyota Y, Nagaoka A. Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci. L.eff. 1998;98(1):101-4. https://doi.org/10.1016/0304-3940(89)90381-9
  54. Kamii H, Kinouchi H, Sharp FR, Epstein CJ, Sagar SM, Chan PH. Expression of c-fos mRNA after a mild focal cerebral ischemia in SOD-1 transgenic mice. Brain Res. 1994;662(1-2):240-4. https://doi.org/10.1016/0006-8993(94)90818-4
  55. Masuhara K, Ohmichi M, Kurachi H, Tasaka K, Kanzaki T, Kimura A, Hayakawa J, Hisamoto K, Koike K, Murata Y. Involvement of extracellular signal-regulated protein kinase in gliosis induced during recovery from metabolic inhibition. Biochem Biophys Res Commun. 2000;267(3):892-96. https://doi.org/10.1006/bbrc.1999.2053
  56. Wu YC et al. Pharmacological effectgs of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chin Med. 2011;6(1):32. https://doi.org/10.1186/1749-8546-6-32
  57. Yang JW, Ouyang JP, Liao WJ, Tian J, Liu YM, Wei L, Wang BH, Li K.The effects of Chinese herb Angelica in focal cerebral ischemia injury in the rat. Clin Hemorheol Microcirc. 2005;32(3):209-15.
  58. Chen F, Yan ZK, Yang B. Effects of acupoint-injection of compound Angelica-root Injectio on cerebral Bcl-2 and Bax immunoactivity and hemorheology in rats with cerebral ischemia-reperfusion injury. Zhen Ci Yan Jiu. 2011;36(2):85-9.
  59. Liao WJ, Fan M, Yang YH, Yang WT and Liu ML: Effects of Angelica sinensis injection on the neuronal metabolites and blood flow speed within reperfusion following the ischemic cerebral injury in rats. Zhongguo Yingyong Shenglixue Zazhi 2003;19(3):209-212.
  60. Aghazadeh-Habashi A, Ibrahim A, Carran J, Anastassiades T, Jamali F.Single Dose Pharmacokinetics and Bioavailability of Glucosamine in the Rat. J Pharm Pharmaceut Sci. 2002;5(2):181-184.
  61. Choi MS, Lee YH, Shim CK. Bioavailabilities of Omeprazole administered to rats through various routes. Arch Pharm Res. 1995 18(3):141-145. https://doi.org/10.1007/BF02979185
  62. Kim KM, Kim MJ, Kang JS. Absorption, distribution, metabolism, and excretion of decursin and decursinol angelate from Angelica gigas Nakai. J Microbiol Biotechnol. 2009;19(12):1569-72. https://doi.org/10.4014/jmb.0905.05028

Cited by

  1. Single Intramuscular-dose Toxicity of Samgihwalryeok-Pharmacopuncture in Sprague-Dawley Rats vol.17, pp.2, 2014, https://doi.org/10.3831/KPI.2014.17.016
  2. An Analysis of the Combination Frequencies of Constituent Medicinal Herbs in Prescriptions for the Treatment of Stroke in Korean Medicine: Determination of a Group of Candidate Prescriptions for Universal Use vol.2016, 2016, https://doi.org/10.1155/2016/2674014