DOI QR코드

DOI QR Code

Simulation Study on the DC/RF Characteristics of MHEMTs

MHEMT 소자의 DC/RF 특성에 대한 시뮬레이션 연구

  • Son, Myung-Sik (Department of Electronic Engineering, Sunchon National University)
  • Received : 2011.06.24
  • Accepted : 2011.09.20
  • Published : 2011.09.30

Abstract

GaAs-based metamorphic high electron mobility transistors (MHEMTs) and InP-based high electron mobility transistors (HEMTs) have good microwave and millimeter-wave frequency performance with lower minimum noise figure. MHEMTs have some advantages, especially for cost, compared with InP-based ones. In this paper, InAlAs/InxGa1-xAs/GaAs MHEMTs are simulated for DC/RF small-signal analysis. The hydrodynamic simulation parameters are calibrated to a fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs substrate, and the simulations for RF small-signal characteristics are performed, compared with the measured data, and analyzed for the devices. In addition, the simulations for the DC/RF characteristics of the MHEMTs with different gate-recess structures are performed, compared and analyzed.

GaAs나 InP 기반의 high electron mobility transistor (HEMT) 소자들은 우수한 마이크로파 및 밀리미터파 주파수 특성 및 이에 따른 우수한 저잡음 특성을 가지고 있다. GaAs 기판 위에 점진적으로 성장된 메타몰픽(Metamorphic) HEMTs (MHEMTs)는 InP 기판 위에 성정한 HEMT에 비해 비용 측면에서 커다란 장점을 가지고 있다. 본 논문에서는 이러한 MHEMT의 DC/RF 소신호 특성을 예측하기 위하여 InAlAs/InGaAs/GaAs MHEMT 소자들의 DC/RF 소신호 주파수 특성을 시뮬레이션하였다. 2차원 소자 시뮬레이터의 hydrodynamic 전송 모델을 사용하여 $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ 이종접합 구조를 갖는 제작된 0.1-${\mu}m$ ${\Gamma}$-게이트 MHEMT 소자에 대하여 파라미터 보정 작업을 수행한 후, MHEMT 소자들에 대해 DC 특성 및 RF 소신호 주파수 특성을 시뮬레이션하고 실험 데이터와 비교 분석하였다. 또한, 게이트 리세스 구조에 따른 MHEMT 소자들의 DC/RF 특성을 시뮬레이션하고 비교 분석하였다.

Keywords

References

  1. M. -S. Son, Journal of the Semiconductor & Display Technology 10, 63 (2011).
  2. User's mannual of ISE-DESSIS, Ver. 9.5.
  3. M. -S. Son, B. -H. Lee, M. -R. Kim, S. -D. Kim, and J. -K. Rhee, Journal of the Korean Physical Society 44, 408 (2004).
  4. M. Han, S. -D. Kim, and J. -K. Rhee, Journal of the Institute of Electronic Engineers of Korea-SD 42, 1 (2005).
  5. C. S. Whelan, P. F. Marsh, W. E. Hoke, R. A. McTaggart, C. P. McCarroll, and T. E. Kazior, Proceedings of 2000 International Conference on Indium Phosphide and Related Materials 337 (2000).
  6. T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, and Y. Ishii, IEEE Trans. Electron Devices 45, 2390 (1998). https://doi.org/10.1109/16.735714
  7. M. H. Somerville, A. Ernst, and J. A. del Alamo, IEEE Transactions on Electron Devices 47, 922 (2000). https://doi.org/10.1109/16.841222
  8. Y. -H. Baek, J. -H. Oh, S. -G. Choi, W. -S. Sul, and J. -K. Rhee, Journal of the Korean Physical Society 54, 1868 (2009). https://doi.org/10.3938/jkps.54.1868
  9. F. Schwierz and J. J. Liou, Modern Microwave Transistors: Theory, Design, and Performance, (Wileyinterscience Publication, Hoboken, 2003), pp.4-60.
  10. H. Sugiyama, H. YokoYama, and T. Kobayashi, Japanese Journal of Applied Physics 43, 534 (2004). https://doi.org/10.1143/JJAP.43.534
  11. H. Y. Kim, H. J. Oh, S. W. Ahn, M. -Y. Ryu, J. Y. Lim, S. H. Shin, S. Y. Kim, and J. D. Song, J. Korean Vaccum Soc. 19, 211 (2010). https://doi.org/10.5757/JKVS.2010.19.3.211
  12. Y. -D. Woo and M. -D. Kim, J. Korean Vaccum Soc. 12, 251 (2003).

Cited by

  1. Simulation Design of MHEMT Power Devices with High Breakdown Voltages vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.335