DOI QR코드

DOI QR Code

Effect of Injection Stage of SF6 Gas Incorporation on the Limitation of Carbon Coils Geometries

육불화황 기체의 주입단계에 따른 탄소코일 기하구조의 제약

  • Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
  • 김성훈 (신라대학교 에너지응용화학과)
  • Received : 2011.05.31
  • Accepted : 2011.08.23
  • Published : 2011.09.30

Abstract

Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils according to the injection stage of $SF_6$ gas incorporation were investigated. A continuous injecting of $SF_6$ gas flow could give rise to many types of carbon coils-related geometries, namely linear tub, micro-sized coil, nano-sized coil, and wave-like nano-sized coil. However, the limitation of the geometry as the nano-sized geometries of carbon coils could be achieved by the incorporation of $SF_6$ in a short time (1 min) during the initial deposition stage. A delayed injection of a short time $SF_6$ gas flow can deteriorate the limitation of the geometries. It confirms that the injection time and its starting point of $SF_6$ gas flow would be very important to determine the geometries of carbon coils.

니켈촉매 막을 증착시킨 산화규산 기판위에 아세틸렌기체와 수소기체를 원료로 육불화황기체를 첨가기체로 탄소코일을 증착하였다. 육불화황이 투입되는 단계에 따라 성장된 탄소코일의 특성(형성 밀도, 형상)을 조사하였다. 육불화황을 연속적으로 주입하였을 경우 선형, 마이크로크기 코일, 나노크기 코일, 그리고 파동형 나노크기 코일 등 다양한 형태의 탄소코일들이 성장하였다. 하지만, 탄소코일 초기 증착단계에서 1분정도의 짧은시간 동안 육불화황을 주입한 경우 나노크기의 탄소코일 형상만을 대부분 얻을 수 있었다. 탄소코일 합성반응시간이 1분 정도 지체된 후의 단계에서 짧은시간 동안의 육불화황 주입은 코일형상 제어를 저해하였다. 따라서, 육불화황의 주입 시간과 주입단계가 탄소 코일의 형상을 결정하는 중요한 요인임을 알 수 있었다.

Keywords

References

  1. W. R. Davies, R. J. Slawson, and G. R. Rigby, Nature 171, 756 (1953).
  2. R. T. K. Baker, Carbon 27, 315 (1989). https://doi.org/10.1016/0008-6223(89)90062-6
  3. L. J. Pan, T. Hayashida, M. Zhang, and Y. Nakayama, Jpn. J. Appl. Phys. 40, L235 (2001). https://doi.org/10.1143/JJAP.40.L235
  4. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science 265, 635 (1994). https://doi.org/10.1126/science.265.5172.635
  5. A. Fonseca, K. Hernadi, J. B. Nagy, Ph. Lambin, and A. Lucas, Carbon 33, 1759 (1995). https://doi.org/10.1016/0008-6223(95)00150-3
  6. S. Ihara and S. Itoh, Carbon 33, 931 (1995). https://doi.org/10.1016/0008-6223(95)00022-6
  7. K. Akagi, R. Tamura, and M. Tsukada, Phys. Rev. Lett. 74, 2307 (1995). https://doi.org/10.1103/PhysRevLett.74.2307
  8. K. D. Kim and S. H. Kim, J. Korean Vacuum Soc. 18, 481 (2009). https://doi.org/10.5757/JKVS.2009.18.6.481
  9. Y. Song and S. J. Kang, J. Korean Vacuum Soc. 18, 488 (2009). https://doi.org/10.5757/JKVS.2009.18.6.488
  10. A. Volodin, D. Buntinx, M. A. Ahlskog, A. Fonseca, J. B. Nagy, and C. V. Haesendonck, Nano Lett. 4. 1775 (2004). https://doi.org/10.1021/nl0491576
  11. A. Szabo, A. Fonseca, J. B. Nagy, Ph. Lambin, and L.P. Biro, Carbon 43, 1628 (2005). https://doi.org/10.1016/j.carbon.2005.01.025
  12. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998). https://doi.org/10.1063/1.122911
  13. V. Ivanov, J. B. Nagy, Ph. Lambin, A. A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, and J. Vanlanduyt, Chem. Phys. Lett. 223, 329 (1994). https://doi.org/10.1016/0009-2614(94)00467-6
  14. M. Lu, H. L. Li, and K. T. J. Lau, Phys. Chem. B 108, 6186 (2004). https://doi.org/10.1021/jp0360265
  15. C. J. Su, D. W. Hwang, S. H. Lin, B. Y. Jin, and L. P. Hwang, Phys. Chem. Commun. 5, 34 (2002).
  16. S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995). https://doi.org/10.1007/BF00356048
  17. X. Chen and S. Motojima, J. Mater. Sci. 34, 5519 (1999). https://doi.org/10.1023/A:1004768629799
  18. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996). https://doi.org/10.1016/0008-6223(95)00169-7

Cited by

  1. Effect of Gas Phase Cycling Modulation of C2H2/SF6Flows on the Formation of Carbon Coils vol.21, pp.3, 2012, https://doi.org/10.5757/JKVS.2012.21.3.178
  2. Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6Flow Incorporation in C2H2and H2Source Gases vol.21, pp.1, 2012, https://doi.org/10.5757/JKVS.2012.21.1.48
  3. Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.277