DOI QR코드

DOI QR Code

Variability of Hydrologic Partitioning revisiting Horton Index

Horton 지수의 재논의를 통한 수문분할의 변동성

  • 최대규 (부경대학교 환경해양대학 환경공학과) ;
  • 최민하 (한양대학교 공과대학 토목공학과) ;
  • 안재현 (서경대학교 공과대학 토목공학과) ;
  • 박무종 (한서대학교 공과대학 토목공학과) ;
  • 김상단 (부경대학교 환경해양대학 환경공학과)
  • Received : 2010.07.24
  • Accepted : 2011.03.15
  • Published : 2011.04.30

Abstract

In order to explore vegetation adaptation to climate variability and the impacts on water balance dynamics, the inter-regional and the inter-annual variability of both water availability and vegetation productivity are investigated. The Horton index, which is the ratio between actual evapotranspiration and catchment wetting as a measure of vegetation water use at catchment-scale, is revisited to quantify the effects of growing-season water availability on hydrologic partitioning at catchment scale. It is shown that the estimated Horton index is relatively constant irrespective of inter-annual climate variability. In addition, the Horton index is compared with catchment-scale vegetation rain use efficiency. The results show that there is an interesting pattern in the response of vegetation water use to water availability. When water becomes the limiting factor for vegetation productivity, the catchment-scale vegetation rain use efficiency converges to a common maximum value in agreement with earlier findings at the ecosystem level.

기후변동에 따른 식생반응 및 그에 따른 물수지 동역학의 변화를 살펴볼 목적으로 본 연구에서는 식생의 물 이용가능성과 식생 생산량의 지역별 연별 변동성을 분석하였다. 유역의 식생 물이용의 대리변수로서 습윤량에 대한 기화량의 비로 표현되는 Horton 지수의 계산을 통하여 유역에서의 수문 분할과 그에 따른 식생의 물 이용 가능성에 대한 정량화를 시도하였다. 연별 Horton 지수의 추정결과 기후의 변동성과 비교하여 볼 때 상대적으로 일정한 값을 유지하고 있는 것을 살펴볼 수 있다. 이와 더불어 Horton 지수와 식생의 강우이용효율을 비교한 결과, 물 이용가능성에 따른 식생의 물 이용에 대한 흥미로운 패턴이 있음을 살펴볼 수 있었다. 물이 식생 성장에 제한요소가 될 경우 식생의 강우이용효율은 공통적인 최대값으로 수렴한다는 선행연구들의 결과를 본 연구를 통해서도 확인할 수 있다.

Keywords

References

  1. 국가수자원관리종합시스템, http://www.wamis.go.kr, 2010.
  2. 김해동, 박명희, 안지숙, 우리나라의 NPP분포 추정에 관한연구, 계명대학교 낙동강 환경원, 환경과학논집, 제4권, 제1호, pp.171-179, 1999.
  3. 이재수, 수문학, 구미서관, 2006.
  4. 한국건설기술연구원, 지표수 수문성분 해석기술 개발, 과학기술부, 2004.
  5. 한수희, 김상단, 토양수분과 식생 물 압박에 대한 생태수문학적 해석: 추계학적 모형의 유도와 적용을 중심으로, 수질보전 한국물환경학회지, 제24권, 제1호, pp.99-106, 2008.
  6. Bai, Y., Wu, J., Qi, X., Pan, Q., Huang, J., Yang, D. and Han, X. (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, Vol. 89, No. 8, pp. 2140-2153. https://doi.org/10.1890/07-0992.1
  7. Boutton, T.W., Tieszen, L.L. and Imbamba, S.K., Biomass dynamics of grassland vegetation in Kenya. African Journal of Ecology, Vol .26, pp. 89-101, 1988. https://doi.org/10.1111/j.1365-2028.1988.tb00960.x
  8. Budyko, M. I., Climate and life. Academic, New York, 1974.
  9. Deshmukh, I. K., A common relationship between precipitation and grassland peak biomass for east and southern Africa. African Journal of Ecology, Vol. 22, pp. 181-186, 1984. https://doi.org/10.1111/j.1365-2028.1984.tb00693.x
  10. Donohue, R. J., Roderick, M. L. and McVicar, T. R., Vegetation dynamics and Budyko' hydrological model. Hydrology and Earth System Sciences, Vol. 11, pp. 983-995, 2007. https://doi.org/10.5194/hess-11-983-2007
  11. Fang J., Piao, S., Tang, Z., Peng, C. and Ji, W., Interannual variability in net primary production and precipitation. Science, Vol 293, pp. 479-480, 2001. https://doi.org/10.1126/science.1061697
  12. Gill, P.E., Murray, W. and Saunders, M.A., User's Guide for SNOPT 5.3: A FORTRAN Package for Large-scale Nonlinear Programming. University of California, San Diego, 1999.
  13. Guo, R., Wang, X., Onyang, Z. and Li, Y. (2006). Spatial and temporal relationships between precipitation and ANPP of four types of grasslands in northern China. Journal of Environmental Sciences, Vol. 18, No. 5, pp. 1024-1030. https://doi.org/10.1016/S1001-0742(06)60033-8
  14. Horton, R. E., The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union, Vol. 14, pp. 446-460, 1933. https://doi.org/10.1029/TR014i001p00446
  15. Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T., Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., Small, E. E. and Williams, D. G., Convergence across biomes to a common rain use efficiency. Nature, Vol. 429, pp. 651-654, 2004. https://doi.org/10.1038/nature02561
  16. Kim, S., Han, S. and Kim, E., Stochastic modelling of soil water and plant water stress using cumulant expansion theory. Ecohydrology, DOI: 10.1002/eco.127, 2010.
  17. Knapp, A, K. and Smith, M. D. (2001). Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production, Science, Vol. 291, pp. 481-484. https://doi.org/10.1126/science.291.5503.481
  18. Lyne, V. and Hollick, M., Stochastic Time Variable Rainfall Runoff Modeling. Hydrology and Water Resources Symposium Berth. Preoceedings, National Committee on Hydrology and Water Resources of the Institution of Engineers, Australia, pp. 89-92, 1979.
  19. McNaughton, S. J., Sala, O. E. and Oesterheld, M., Comparative ecology of African and South American arid to subhumid ecosystems. Biological relationships between Africa and South America. New Haven: Yale University Press. pp. 548-567, 1993.
  20. Porporato, A., Laio, F., Ridolfi, L. and Rodriguez-Iturbe, I., Plants in watercontrolled ecosystems: Active role in hydrologic processes and response to water stress. III. Vegetation water stress. Advanced in Water Resources, Vol. 24, pp. 725-744, 2001. https://doi.org/10.1016/S0309-1708(01)00006-9
  21. Rinehart, A. J., Vivoni, E. R. and Brooks, P. D., Effects of vegetation, albedo and radiation sheltering on the distribution of snow in the Valleys Caldera, New Mexico. Ecohydrology, Vol. 1, pp. 253-270, 2008. https://doi.org/10.1002/eco.26
  22. Sala, O. E., Parton, W. J., Joyce, L. A. and Lauenroth, W. K., Primary production of the central grassland region of the United States. Ecology, Vol. 69, pp. 40-45, 1988. https://doi.org/10.2307/1943158
  23. Scanlon, B. R., Levitt, D. G., Reedy, R. C., Keese, K. E. and Sully, M. J., Ecological controls on water-cycle response to climate variability in deserts. Proceedings of the National Academy of Sciences of the USA, Vol. 102, pp. 6033-6038, 2005. https://doi.org/10.1073/pnas.0408571102
  24. Schimel, D. S., Braswell, B. H. and Parton, W. J., Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences of the USA, Vol. 94, pp. 8280-8283, 1997. https://doi.org/10.1073/pnas.94.16.8280
  25. Troch, P. A., Martinez1, G. F., Pauwels, V. R. N., Durcik, M., Sivapalan, M., Harman, C., Brooks, P. D., Gupta, H. and Huxman, T., Climate and vegetation water use efficiency at catchment scales. Hydrological Process, Vol. 23, pp. 2409-2414, 2009. https://doi.org/10.1002/hyp.7358
  26. Veatch, W., Brooks, P. D., Gustafson, J. R. and Molotch, N. P., Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site. Ecohydrology, DOI:10.1002/eco.45, 2009.
  27. Webb, W., Szarek, S., Lauenroth, W., Kinerson, R. and Smith, M., Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, Vol. 59, pp. 1239-1247, 1986.