DOI QR코드

DOI QR Code

Pathophysiology of olive flounder Paralichthys olivaceus suffering from emaciation

여윔증 넙치, Paralichthys olivaceus의 증상에 대한 병태생리학적 고찰

  • Kim, Yi-Kyung (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jeong, Joon-Bum (School of Marine Biomedical Sciences, Jeju National University) ;
  • Lee, Mu-Kun (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Park, Soo-Il (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Park, Myeong-Ae (Pathology Division, National Fisheries Research and Development Institute) ;
  • Choe, Mi-Kyung (Jeju Branch, Korea Fisheries Resources Agency) ;
  • Yeo, In-Kyu (School of Marine Biomedical Sciences, Jeju National University)
  • 김이경 (부경대학교 수산생명의학과) ;
  • 정준범 (제주대학교 해양의생명과학부) ;
  • 이무근 (부경대학교 수산생명의학과) ;
  • 박수일 (부경대학교 수산생명의학과) ;
  • 박명애 (국립수산과학원 병리연구과) ;
  • 최미경 (수산자원사업단 제주사업소) ;
  • 여인규 (제주대학교 해양의생명과학부)
  • Received : 2011.02.11
  • Accepted : 2011.04.05
  • Published : 2011.04.30

Abstract

This study was aimed to investigate the pathophysiological changes of olive flounder, Paralichthys olivaceus suffering from emaciation. A plasma osmolality was higher in the emaciated and control flounders than that of normal teleost, suggesting osmoregulatory failure in both of them. Also, the control in the same stock with emaciated flounder seem to be classified into a primary degree of emaciation. According to microscopic observations, the inflammatory responses were observed in the submucosal layer of anterior intestine, although the some of mucosal intestinal epithelium still remained. It was suggested that the pathological changes of the anterior part give rise to malabsorption of nutrients through the mucosa. In the posterior intestine and rectum, the mucosal epithelium were almostly sloughed off and severe inflammatory responses were observed in the submucosa. Immunoreaction for NKCC was not detected in the mucosal epithelial cells in intestine because of sloughing of epithelium. These changes would lead to functional disorder in the intestine, such as malabsorption of nutrients and osmoregulatory failure. Also important is to investigate the recovery phase.

본 연구는 여윔증상을 보이는 넙치의 병태생리학적 변화를 관찰하는 것으로 목적으로 하였다. 여윔넙치가 발생한 수조 내의 정상넙치와 여윔넙치의 혈장 삼투압을 측정한 결과, 정상적인 해산어의 삼투압(280~330 mOsm/L)보다 훨씬 높은 약 361과 405 mOsm/L로 각각 나타났다. 이러한 사실은 여윔넙치와 동일한 수조 내의 정상넙치의 삼투압 조절기능에 이상이 있음을 시사하고 있다. 또한, 외관상 증상을 나타내고 있지 않으나, 여윔넙치가 발생한 수조의 정상적인 넙치는 여윔증상이 나타나기 이전의 초기단계로 정의할 수 있다. H&E염색을 통하여 여윔넙치의 장을 관찰한 결과, 여윔넙치의 전장에서는 상피세포가 남아 있기는 하나, 점막하 조직에서는 염증반응이 확인되었으며, 전장의 영양물질 흡수 기능에 손상이 야기되어 있을 가능성이 시사되었다. 그리고 후장의 경우 점막상피는 거의 손실되었으며, 직장에서는 점막상피의 소실과 아울러 소화관 고유의 folding 구조가 거의 확인되지 않았다. 면역염색의 결과에서도 장의 상피조직이 손실됨으로써 점막상피에 존재하는 $Na^+/K^+/2Cl^-$ (NKCC) cotransporter 에 대한 면역반응이 확인되지 않았다. 따라서, 해산어의 수분흡수의 중요한 장소인 후장과 직장의 상피조직이 심하게 손실됨으로써 넙치의 삼투조절기능의 균형이 깨지고 탈수현상이 보이고 따라서 여윔증상이 나타난 것으로 여겨진다. 뿐만 아니라 전장의 조직학적 변화를 통한 여윔증상에 대한 영양학적 관점에서의 고찰이 이루어져야 한다. 양식넙치의 여윔증 원인분석을 위해서 여윔증상 개체뿐만 아니라 여윔증상을 보이다가 회복된 개체에 대한 검토도 필요하다.

Keywords

References

  1. Ando, M., Mukuda T. and Kozaka, T.: Water metabolism in the eel acclimated to seawater:from mouth to intestine. Comp. Biochem. Physiol. B., 136: 621-633, 2003.
  2. Aoki, M., Kaneko, T., Katoh, F., Hasegawa, S., Tsutsui, N. and Aida, K.: Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J. Exp. Biol., 206:3495-3505, 2003. https://doi.org/10.1242/jeb.00579
  3. Bentley, P.J.: Endocrines and osmoregulation, In Zoophysiology, vol.39, Springer, Berlin, 2002.
  4. Collie, N.L. and Bern, H.A.: Changes in intestinal fluid transport associated with smoltification and seawater adaptation in coho salmon, Oncorhynchuskisutch(Walbaum)., J. Fish Biol. 21:337-348, 1982. https://doi.org/10.1111/j.1095-8649.1982.tb02839.x
  5. Cutler, C.P. and Cramb, G.: Differential expression of absorptive cation-chloride-cotransporters in the European eel Anguilla anguilla. Comp. Biochem. Physiol. B. 149:63-73, 2008. https://doi.org/10.1016/j.cbpb.2007.08.007
  6. Evans, D.H.: Osmotic and ionic regulation, pp.315-341, CRC Press, Boca Raton, 1993.
  7. Greger, R.: Ion transporter mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol. Rev. 65:760-797, 1985. https://doi.org/10.1152/physrev.1985.65.3.760
  8. Hass, M. and Forbush, B.III.: The Na-K-Cl cotranspoters. J. Bioenerg. Biomembr. 30:161-172, 1998. https://doi.org/10.1023/A:1020521308985
  9. Hass, M. and Forbush, B.III.: The Na-K-Cl cotranspoters of secretory epithelia. Annu. Rev. Physiol., 62:515-534, 2000. https://doi.org/10.1146/annurev.physiol.62.1.515
  10. Hirano, T. and Mayer-Gostan, N.: Eel esophagus as an osmoregulatory organ. Proc. Natl. Acad. Sci., USA, 73:1348-1350, 1976. https://doi.org/10.1073/pnas.73.4.1348
  11. Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P. and Toyoji, K.: Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J. Exp. Biol. 211:2584-2599, 2008. https://doi.org/10.1242/jeb.018663
  12. Isenring, P., Jacoby, S.C., Chang, J. and Forbush, B.: Mutagenic mapping of the Na-K-Cl cotransporter for domains involved in ion transport and bumetanide binding. J. Gen. Physiol., 112:549-558, 1998. https://doi.org/10.1085/jgp.112.5.549
  13. Ishimatsu, A., Hayashi, M., Nakane, M. and Sameshima, M.: Pathophysiology of cultured tiger puffer Takifugu rubripes suffering from the Myxosporean emaciation disease. Fish Pathol., 42:211-217, 2007. https://doi.org/10.3147/jsfp.42.211
  14. Kim, Y.K., Ideuchi, H., Watanabe, S., Park, S.I., Huh, M.D. and Kaneko, T.: Rectal water absorption in seawater-adapted Japanese eel Anguilla japonica. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 151:533-541, 2008. https://doi.org/10.1016/j.cbpa.2008.07.016
  15. Knepper, M.A. and Brooks, H.L.: Regulation of the sodium transporter NHE3, NKCC2 and NCC in the kidney. Curr. Opin. Nephrol. Hypertens., 10:655-659, 2001. https://doi.org/10.1097/00041552-200109000-00017
  16. Loretz, C.A.: Electrophysiology of ion transport in teleost intestinal cells. In: Cellular and Molecular Approaches to Fish Ionic Regulation, pp.25-56, Academic, New York, 1995.
  17. Marshall, W.S. and Grosell, M.: Ion transport, osmoregulation, and acid-base balance, In The physiology of fishes, pp.179-230, CRC Press, Boca Raton, 2006.
  18. Mount, D.B., Delpire, E., Gamba, G., Hall, A.E., Poch, E., Hoover, R.S. and Herbert, S.C.: The electroneutral cation-chloride cotransporter. J. Exp. Biol., 201:2091-2102, 1998.
  19. Ogawa, K. and Yokoyama, H.: Emaciation disease of cultured tiger puffer Takifugu rubripes. Bull. Natl. Res. Inst., Suppl., 5:65-70, 2001.
  20. Smith, H.W.: The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol. 93:480-505, 1930.
  21. Starremans, P.G., Kersten, F.F., Knoers, N.V., van den Heuvel, L.P. and Bindels, R.J.: Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J. Am. Soc. Nephrol., 14:1419-1426, 2003. https://doi.org/10.1097/01.ASN.0000064948.39199.A0
  22. Tin Tun, Ogawa, K. and Wakabayashi, H.: Pathological changes induced by three myxosporeans in the intestine of cultured tiger puffer, Takifugu rubripes (Temminck and Schlegel). J. Fish Dis., 25:63-72, 2002. https://doi.org/10.1046/j.1365-2761.2002.00333.x
  23. Yanagida, T., Nomura, Y., Kimura, T., Fukuda, Y., Yokoyama, H. and Ogawa, K.: Molecular and morphological redescriptions of enteric myxozoans, Enteromyxum leei (formerly Myxidium sp. TP) and Enteromyxum fugu comb. n. (syn. Myxidium fugu) from cultured tiger puffer. Fish Pathol., 39:137-143, 2004. https://doi.org/10.3147/jsfp.39.137
  24. Veillette, P.A., White, R.J., Specker, J.L.: Changes in intestinal fluid transport in Atlantic salmon (Salmo salar L) during parr-smolt transformation. Fish Physiol. Biochem. 12:193-202, 1993. https://doi.org/10.1007/BF00004367
  25. Warth, R., Bleich, M., Thiele, I.I., Lang, F. and Greger, R.: Regulation of the $Na^+2Cl^-K^+$cotransporter in in vitro perfused rectal gland tubules of squalus acanthias. Pflugers Arch., 436:521-528, 1998. https://doi.org/10.1007/s004240050667

Cited by

  1. Enteromyxum leei (Myxosporea: Bivalvulida) as the cause of myxosporean emaciation disease of farmed olive flounders (Paralichthys olivaceus) and a turbot (Scophthalmus maximus) on Jeju Island, Korea vol.115, pp.11, 2016, https://doi.org/10.1007/s00436-016-5200-5
  2. Hematological Analysis and Non-specific Immune Responses of Emaciated Olive Flounder, Paralichthys olivaceus in Korea vol.29, pp.6, 2017, https://doi.org/10.13000/JFMSE.2017.29.6.1758
  3. (Temminck and Schlegel) pp.01407775, 2019, https://doi.org/10.1111/jfd.12912
  4. 사육수의 pH변화가 숭어(Mugil cephalus)에 미치는 생리적 영향 vol.50, pp.2, 2011, https://doi.org/10.5657/kfas.2017.0153-159
  5. A Study on Naming the Aquatic Animal Diseases in Korea vol.32, pp.1, 2011, https://doi.org/10.35372/kmiopr.2017.32.1.003
  6. 톨트라주릴(Toltrazuril)을 이용한 제주도 넙치(Paralichthys olivaceus)의 점액포자충성 여윔증에 대한 치료법 연구 vol.33, pp.1, 2011, https://doi.org/10.7847/jfp.2020.33.1.055