DOI QR코드

DOI QR Code

Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0

Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성

  • Lee, Sang-Hyun (Department qf Inorganic Materials Engineering, Kyungpook National University) ;
  • Lee, Seung-Yup (Department qf Inorganic Materials Engineering, Kyungpook National University) ;
  • Park, Byung-Ok (Department qf Inorganic Materials Engineering, Kyungpook National University)
  • 이상현 (경북대학교 무기재료공학과) ;
  • 이승엽 (경북대학교 무기재료공학과) ;
  • 박병옥 (경북대학교 무기재료공학과)
  • Received : 2011.07.05
  • Accepted : 2011.08.05
  • Published : 2011.08.31

Abstract

$CuInS_2$ thin films were prepared using a sol-gel spin-coating method. That makes large scale substrate coating, simple equipment, easy composition control available. The structural and optical properties of $CuInS_2$ thin films that include less toxic materials (S) instead of Se, tetragonal chalcopyrite structure. Copper acetate monohydrate ($Cu(CH_3COO)_2{\cdot}H2O$) and indium acetate ($In(CH_3COO)_3$) were dissolved into 2-propanol and l-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 3000 rpm, and dried at $300^{\circ}C$ for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box and chalcopyrite phase of $CuInS_2$ was observed. To determine the optical properties measured optical transmittance of visible light region (380~770 nm) were less than 30 % in the overall. The XRD pattern shows that main peak was observed at Cu/In ratio 1.0 and its orientation was (112). As annealing temperature increases, the intensity of (112) plane increases. The unit cell constant are a = 5.5032 and c = 11.1064 $\AA$, and this was well matched with JCPDS card. The optical transmittance of visible region was below than 30 %.

박막 태양전지의 저가 고효율화를 실현하기 위해 넓은 면적의 기판 위에 코팅이 가능하며 진공의 유자가 필요 없기 때문에 장치가 간단하고 고순도의 균질한 박막을 얻을 수 있고 박막의 조성을 쉽게 조절할 수 있는 Sol-Gel법을 이용 하였다. Se보다 저가이며 독성이 없고 풍부한 원료인 S로 치환하여 사용하며 Cu/In비 값을 조절하고 tetragonal chalcopyrite $CuInS_2$의 열처리 온도에 따른 박막의 구조적, 광학적 특성에 미치는 변수들의 영향을 알아보았다. XRD pattern을 관찰한 결과 Cu/In비가 1.0일 때 $2{\theta}=27.9^{\circ}$에서 주피크가 가장 강하게 나타났으며 (112) 방향의 배향성을 가진 chalcopyrite상임을 확언 할 수 있었다. 열처리 온도가 증가할수록 (112) 면의 강도가 커지며 $500^{\circ}C$에서 열처리를 한 $CuInS_2$ 박막은 tetragonal 구조의 화학량론적 $CuInS_2$ 특징을 나타내고 본 실험의 샘플의 격자상수를 측정한 값이 a = 5.5032, c = 11.1064 ${\AA}$이며 JCPDS(Joint Committee on Powder Diffraction Standards)에 보고된 데이터 a = 5.523, c = 11.14 ${\AA}$과 거의 일치하였다. 광학적 특성을 알아보기 위해 측정한 광투과율은 가시광선 영역(380~770 nm)에서 전체적으로 30% 이하로 나타났다.

Keywords

References

  1. H. Hisizawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, "Crystallization and transformation of zirconia under hydrothermal conditions", J. Am. Ceram. Soc. 65 (1982) 343. https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
  2. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons and W.E. Buhro, "Solution-liquid-solid growth of crystalline - semiconductors: an analogy to vapor-liquid-solid growth", Science 270 (1995) 1791. https://doi.org/10.1126/science.270.5243.1791
  3. Photovoltaic Energy Program Overview Fiscal 2000, US DOE (2001).
  4. K. Zweibel, "Reproducibility studies on thin-film copperindium diselenide prepared from copper indium oxide", Solar Energy Material & Solar Cell (2000) 375.
  5. S.K. Deb, "Current statux of thin film solar cell research at SERI", Thin Solid Films 163 (1988) 75. https://doi.org/10.1016/0040-6090(88)90413-0
  6. S.A. Al Kuhaimi and S. Bahamman, "Al screen-printed CdS/$CuInSe_{2}$ solar cell", J. J. A. P. 29(8) (1990) 1499.
  7. S.M. Babu, R. Dhanaskaran and P. Ramasamy, "Thin film deposition and characteriwation of $CuInSe_{2}$", Thin Solid Films 198 (1991) 269. https://doi.org/10.1016/0040-6090(91)90345-X
  8. M. Aggour, U. Störkel, C. Murrell, S.A. Campbell, H. Jungblut, P. Hoffmann, R. Mikalo, D. Schmeisser and H.J. Lewerenz, "Electrochemical interface modification of $CuInSe_{2}$ thin films", Thin Solid Films 403-404 (2002) 57.
  9. K.H. Yoon, J.S. Song, I.J. Park, S.K. Kim, J.C. Lee and G.W. Kang, "CIS-based thin film solar cells technology development", final report for Ministry of Commerce, Industry and Energy (2001) 49.
  10. Ashok Kumar Sharma and Poolla Rajaram, "Nanocrystalline thin films of $CuInSe_{2}$ grown by spray pyrolysis", Materials Science and Engineering B 172 (2010) 37. https://doi.org/10.1016/j.mseb.2010.04.012
  11. M. Ben Rabeh, M. Zribi, M. Kanzan and B. ReZig, "Structure and opitical characterization of Sn incorporation in $CuInSe_{2}$ thin films grown by vacuum evaporation method", Materials Latters. 59(3) (2005) 3164. https://doi.org/10.1016/j.matlet.2005.05.045
  12. Mauricio Ortega-Lopez and Arturo Morales-Acevedo, "Characterization of $CuInSe_{2}$ thin films for solar cells prepared by spray pyrolysis", Thin Solid Films 330 (1998) 96. https://doi.org/10.1016/S0040-6090(98)00568-9
  13. JCPDS : Joint Committee on Powder Diffraction Standards, Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA (1997) Card 27-0159.
  14. Z.H. Han, Y.P. Li, H.Q. Zhao, S.H. Yu, X.L. Yin and Y.T. Qian, "A simple solvothermal route to copper chalcogenides", Materials Letters 44 (2000) 366. https://doi.org/10.1016/S0167-577X(00)00060-4
  15. C. Kim, J.T. Kim, S.J. Jung, H.Y. Kim and Y.S. Han, "Preparation of a $CuInSe_{2}$ thin film on a glass substrate for chalcogenide-type photovoltaics via chemical bath deposition", Applied Chemistry 13(1), April (2009) 113.

Cited by

  1. absorber layer by a non-vacuum process of low cost cryogenic milling vol.23, pp.2, 2013, https://doi.org/10.6111/JKCGCT.2013.23.2.108