DOI QR코드

DOI QR Code

Effects of anatase-rutile phase transition and grain growth with WO3 on thermal stability for TiO2 SCR catalyst

WO3 첨가에 의한 TiO2계 SCR 촉매의 상전이 및 입자성장이 고온안정성에 미치는 영향

  • Yoon, Sang-Hyeon (School of Materials Science & Engineering, Pusan National University) ;
  • Kim, Jang-Hoon (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Shin, Byeong-Kil (School of Materials Science & Engineering, Pusan National University) ;
  • Park, Sam-Sik (Test and Research BU, NANO Corporation) ;
  • Shin, Dong-Woo (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Lee, Hee-Soo (School of Materials Science & Engineering, Pusan National University)
  • 윤상현 (부산대 학교 재료공학부) ;
  • 김장훈 (부산대학교 하이브리드 소재솔루션) ;
  • 신병길 (부산대 학교 재료공학부) ;
  • 박삼식 ((주) 나노 시험개발사업부) ;
  • 신동우 (경상대학교 나노신소재공학부) ;
  • 이희수 (부산대학교 재료공학부)
  • Received : 2011.07.13
  • Accepted : 2011.07.29
  • Published : 2011.08.31

Abstract

Thermal stability of the $TiO_2$ SCR catalyst with W03 loading was investigated in terms of structural and morphological analyses. The $TiO_2$ catalysts with 10 w% $WO_3$ content and without $WO_3$ were prepared. which were heat-treated at $800^{\circ}C$ for 5 h. It was found that the catalytic acidity was decreased by thermal degradation in the $WO_3-TiO_2$ specimen that relatively less than the $TiO_2$ specimen from FT-IR analysis. The phase transition of the $TiO_2$ catalyst from anatase to rutile was increased by heal-treatment, and the percentage of the rutile phase was 28.4 % in the $WO_3-TiO_2$ and 22.9 % in the $TiO_2$. A shell region of $WO_3$ distinguished from a $TiO_2$ particle was also observed in the grain boundary region, and the $WO_3$ led to the suppression of grain growth. It could be confirmed that the suppression of grain growth can contribute to the improvement of catalytic properties for thermal stability more than the increase of anatase-rutile phase transformation which cause the reduction of the catalytic activity in the $TiO_2$ SCR catalyst by the presence of $WO_3$.

$WO_3$ 첨가가 $TiO_2$계 SCR 촉매의 고온안정성에 미치는 영향을 구조적, 형상학적 분석을 통해 규명하였다. 순수한 $TiO_2$시편과 10 wt%의 $WO_3$를 첨가한 $WO_3-TiO_2$ 시편을 제조하여 $800^{\circ}C$에서 5시간 동안 열적 스트레스를 인가하였다. FT-IR을 이용하여 촉매의 산점 변화를 확언한 결과 $WO_3-TiO_2$ 시편의 경우가 순수한 $TiO_2$ 시편에 비해 열적 열화로 인한 산점의 감소가 상대적으로 적었다. 반면 $WO_3-TiO_2$$TiO_2$의 anatase에 서 rutile로의 상전이 정도는 각각 28.4%와 22.9%로 오히려 $WO_3-TiO_2$ 시편에서 rutile 상이 더 많이 증가한 것을 확인하였다. 형상학적 분석 결과 $WO_3-TiO_2$ 시편은 고온에서 $TiO_2$에 고용되어 있던 amorphous 상태의 $WO_3$$TiO_2$ 입자 표면에 석출되며 결정화가 일어나게 되고 이로 인해 촉매의 입자성장을 억제함을 확인하였다. 따라서 SCR용 $TiO_2$ 촉매에 첨가된 $WO_3$는 anatase에서 rutile로의 상전이를 촉진시켜 고온에서의 촉매 활성을 저하시킬 수 있지만, 입성장 억제에 대한 영향이 커 결과적으로 고온안정성을 향상시킴을 확인하였다.

Keywords

References

  1. T. Johnson, "Diesel emission control in review", (2006) SAE 2006-01-0030.
  2. C.M. Schar, C.H. Onder and H.P. Geering, "Control of a urea SCR catalytic converter system for a mobile heavy duty diesel engine" (2003) SAE 2003-01-0776.
  3. J.B. Heywood, "Internal Combustion Engine Fundamentals" (McGraw Hill, New York, 1988).
  4. H. Bosch and F. Janssen, "Formation and control of nitrogen oxides", Catalysis Today 2 (1988) 369. https://doi.org/10.1016/0920-5861(88)80002-6
  5. M. Ueda, A. Asano, T. Kondo, Y. Watanabe, T. Fukuma and Y. Harada, "A new optimizing technique of a disel engine aftertreatment system using HC DeNOx catalyst", JASE Review 24 (2003) 47. https://doi.org/10.1016/S0389-4304(02)00249-7
  6. C. Winkler, P. Flörchinger, M.D. Patil and J. Gieshoff, "Modeling of SCR DeNOx catalyst - looking at the impact of substrate attributes" (2003), SAE 2003-01- 0845.
  7. V.I. Parvulescu, P. Grange and B. Delmon, "Catalytic removal of NO", Catalysis Today 46 (1998) 233. https://doi.org/10.1016/S0920-5861(98)00399-X
  8. S. Djerad, M. Crocoll, S. Kureti, L. Tifouti and W. Weisweiler, "Effect of oxygen concentration on the NOx reduction with ammonia over $V_{2}O_{5}-WO_{3}/TiO_{2} $catalyst", Catalysis Today 113 (2006) 208. https://doi.org/10.1016/j.cattod.2005.11.067
  9. K. Tanabe, M. Misono, Y. Ono and Hattori, "New solid acids and bases", 51 (Elsevier, Tokyo 1989) 5.
  10. G. Cristallo, E. Roncari, A. Rinaldo and F. Trifiro, "Study of anatase-rutile transition phase in monolithic catalyst $V_{2}O_{5}/TiO_{2}$and $V_{2}O_{5}-WO_{3}/TiO_{2}$", Applied Catalysis A 209 (2001) 249. https://doi.org/10.1016/S0926-860X(00)00773-0
  11. G. Deo, A.M. Turek, I.E. Wachs, T. Machej, J. Haber, N. Das, H. Eckert and A.M. Hirt, "Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B)", Applied Catalysis A 91 (1992) 27. https://doi.org/10.1016/0926-860X(92)85176-C

Cited by

  1. -SCR vol.23, pp.6, 2013, https://doi.org/10.6111/JKCGCT.2013.23.6.320
  2. evaluation of SCR catalysts adding vanadium-graphene nanocomposite vol.25, pp.6, 2015, https://doi.org/10.6111/JKCGCT.2015.25.6.252