DOI QR코드

DOI QR Code

Annual Variations in Community Structure of Mesozooplankton by Short-term Sampling in Jangmok Harbor of Jinhae Bay

진해만의 장목항에서 단주기 샘플링에 의한 중형동물플랑크톤 군집의 연변동

  • 황옥명 (한국해양연구원 남해분원) ;
  • 신경순 (한국해양연구원 남해분원) ;
  • 백승호 (한국해양연구원 남해분원) ;
  • 이우진 (한국해양연구원 남해분원) ;
  • 김수암 (부경대학교 수산과학대학 자원생물학과) ;
  • 장민철 (한국해양연구원 남해분원)
  • Received : 2011.08.04
  • Accepted : 2011.09.07
  • Published : 2011.09.30

Abstract

The annual variation of mesozooplankton community in the Jangmok harbor of Jinhae Bay was studied in relation to environmental variables. Sampling was carried out weekly from January to December 2009. During the study periods, mesozooplankton community consisted of 44 taxa and the annual mean abundance was 8308 inds. $m^{-3}$. The maximum abundance was observed to be 50043 inds. $m^{-3}$ in August and the minimum in April with 1013 inds. $m^{-3}$. Of these, Penilia avirostris, cirripedia larvae, Evadne tergestina, Acartia omorii, Oikopleura s, Paracalanus parvus s. l., Eurytemora pacifica, Podon s, Oithona s, and Acartia steueri were observed as dominant species in Jangmok bay and they also contributed to 79% of total mesozooplankton. According to non-metric multidimensional scaling (nMDS) and cluster analysis based on the mesozooplankton community data from each season, the community was divided into three groups. The first group included appearence species in winter and spring season, which is mainly dominated the copepod such as A. omorii and E. pacifica. The second and third group was composed with observed species in summer and autumn, respectively. Based on the SIMPER (similarity percentages), P. avirostris in summer and cirripedia larvae in autumn were significantly dominated. Our results indicate that although the mesozooplankton abundances in Jangmok harbor fluctuated abruptly, its annual variation was strongly influenced by water temperature.

Keywords

References

  1. 강영실, 박주석, 이삼석, 김학균, 이필용 (1996) 진해만 수질환경과 동물플랑크톤 군집 및 요각류 분포 특성. 한국수산학회지 29:415-430
  2. 강형구, 강용주 (1998) 한국 동해 남부 연안 일광만의 요각류 Acartia steueri의 알 생산력. 한국수산학회지 31:288-295
  3. 고유봉, 오봉철, 고방연, 손태준 (1994) 제주도 연안역 부유성 요각류의 출현과 주요종의 계절변화. 제주대학교 해양자원연구소 연구보고 18:15-26
  4. 문성용, 오현주, 서호영 (2010) 남해 연안 동물플랑크톤 군집의 계절변동. Ocean and Polar Res 32:411-426 https://doi.org/10.4217/OPR.2010.32.4.411
  5. 문성용, 윤호섭, 서호영, 최상덕 (2006) 가막만 동물플랑크톤 군집의 변동특성과 환경요인. Ocean and Polar Res 28:79-94 https://doi.org/10.4217/OPR.2006.28.2.079
  6. 박철 (1995) 연안생태계 조사방법의 검토. 충남과학연구지 22:154-168
  7. 박철, 이평강, 양성렬 (2002) 계절과 염분 변화에 따른 섬진강 하구역 동물플랑크톤의 분포 변화. 한국해양학회지 바다 7:51-59
  8. 서호영 (2010) 한국의 무척추 동물: 해산 부유성 요각류. 국립생물자원관, 인천, 199 p
  9. 서호영, 이인태, 윤양호, 최상덕, 이삼노 (2002) 가막만에 출현하는 동물플랑크톤의 종조성과 계절별 출현 양상. 한국환경생물학회지 20:118-129
  10. 서호영, 최상덕 (2004) 진해만에 출현하는 동물플랑크톤의 종조성과 계절별 출현양상. 한국환경생물학회지 22:43-56
  11. 유광일, 허회권, 이원철 (1991) 한국 연안에 분포하는 Acartia속 요각류의 분류학적인 재검토. 한국수산학회지 24:255-265
  12. 유정규, 명철수, 최중기, 홍현표, 김은수 (2010) 시화호 중형 동물플랑크톤 군집의 시공간적 변동. Ocean and Polar Res 32:187-201 https://doi.org/10.4217/OPR.2010.32.3.187
  13. 장민철, 신경순, 장풍국, 이우진 (2010) 여름철 장목만의 환경 요인과 중형동물플랑크톤 단주기 변동과의 상관성. Ocean and Polar Res 32:41-52 https://doi.org/10.4217/OPR.2010.32.1.041
  14. 장풍국 (2008) 식물플랑크톤 군집 구조 및 종 천이에 영향을 미치는 영양염 제한과 영양염 비에 관한 연구. 이학박사학위논문, 부산대학교, 166 p
  15. 한국해양연구원 (1999) 진해, 마산만 수질환경 관리모델 개발(III). 한국해양연구원, BSPE99750-00-1238-2, 326 p
  16. 한국해양연구원 (2004) 단주기 관측을 이용한 해양 환경변화에 따른 부유생태계 변화 연구. 한국해양연구원, BSPE88600-1698-3, 138 p
  17. Behrends G, Schneider G (1995) Impact of Aurelia aurita medusa (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel bight (western Baltic Sea). Mar Ecol Prog Ser 127:39-45 https://doi.org/10.3354/meps127039
  18. Beyst B, Buysse D, Dewicke A, Mees J (2001) Surf zone hyperbenthos of Belgian sandy beaches: seasonal patterns. Estuar Coast Shelf Sci 53:877-895 https://doi.org/10.1006/ecss.2001.0808
  19. Bonnet D, Frid CLJ (2004) Seven copepod species considered as indicators of water mass influence and changes: results from a Northumberland coastal station. ICES J Mar Sci 61:485-491 https://doi.org/10.1016/j.icesjms.2004.03.005
  20. Buskey EJ (1995) Growth and bioluminescense of Noctiluca scintillans on varying algal diets. J Plankton Res 17:29-40 https://doi.org/10.1093/plankt/17.1.29
  21. Calbet A, Garrido S, Saiz E, Alcarez M, Duarte CM (2001) Annual zooplankton succession in coastal NW Mediterrranean waters: the importance of the smaller size fractions. J Plankton Res 23: 319-331 https://doi.org/10.1093/plankt/23.3.319
  22. Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial, PRIMER-E, Plymouth UK
  23. Colin SP, Costello JH, Graham WM, Higgins J III (2005) Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnol Oceanogr 50:1264-1268 https://doi.org/10.4319/lo.2005.50.4.1264
  24. Daan R (1987) Impact of egg predation by Noctiluca miliaris on the summer development of copepod populations in the southern North Sea. Mar Ecol Prog Ser 37:9-17 https://doi.org/10.3354/meps037009
  25. David V, Sautour B, Chardy P, Leconte M (2005) Long-term changes of the zooplankton variability in a turbid environment: The Gironde estuary (France). Estuar Coast Shelf Sci 64:171-184 https://doi.org/10.1016/j.ecss.2005.01.014
  26. Day JW, Hall CAS, Kemp WM, Yafiez-Arancibia A (1987) Estuarine Ecology. John Wiley & Sons, New York, 558 p
  27. Dela-Cruz J, Ajani P, Lee R, Pritchard T, Suthers I (2002) Temporal abundance patterns of the red tide dinoflagellate Noctiluca scintillans along the southeast coast of Australia. Mar Ecol Prog Ser 236:75-88 https://doi.org/10.3354/meps236075
  28. Duro A, Saiz E (2000) Distribution and trophic ecology of chaetognaths in the western Mediterranean in relation to an inshore-offshore gradient. J Plankton Res 22:339-361 https://doi.org/10.1093/plankt/22.2.339
  29. Egloff DA, Fofanoff PW, Onbe T (1997) Reproductive biology of marine cladocerans. Adv Mar Biol 31:79-167 https://doi.org/10.1016/S0065-2881(08)60222-9
  30. Enomoto Y (1956) On the occurrence on Noctiluca scintillans (Macartney) in the waters adjacent to the west coast of Kyushu, with special reference to the possible damage caused to the fish eggs by that plankton. Bull Japan Soc Sci Fish 22:82-88 https://doi.org/10.2331/suisan.22.82
  31. Frangopulos M, Spyrakos E, Guisande C (2011) Ingestion and clearance rates of the red Noctiluca scintillans fed on the toxic dinoflagellate Alexandrium minutum (Halim). Harmful Algae 10:304-309 https://doi.org/10.1016/j.hal.2010.11.002
  32. Fromentin JM, Ibanez F (1994) Year-to-year changes in meteorological features of the French coast area during the last halfcentury: examples of two biological responses. Oceanologica Acta 17:285-296
  33. Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  34. Gifford SM, Rollwagen-Bollens GC, Bollens SM (2007) Mesozooplankton omnivory in the upper San Francisco Estuary. Mar Ecol Prog Ser 348:33-46 https://doi.org/10.3354/meps07003
  35. Gislason A, Petursdottir H, Astthorsson OS, Gudmundsson K, Valdimarsson H (2009) Inter-annual variability in abundance and community structure of zooplankton south and north of Iceland in relation to environmental conditions in spring 1990-2007. J Plankton Res 31:541-551 https://doi.org/10.1093/plankt/fbp007
  36. Hamner WM, Madin LP, Alldredge AL, Gilmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol Oceanogr 20:907-917 https://doi.org/10.4319/lo.1975.20.6.0907
  37. Hansen PJ, Miranda L, Azanza RV (2004) Green Noctiluca scintillans: a dinoflagellate with its own green house. Mar Ecol Prog Ser 275:79-87 https://doi.org/10.3354/meps275079
  38. Hattori S (1962) Predatory activity of Noctiluca on anchovy eggs. Bull Tokai Reg Fish Res Lab 9:211-220
  39. Isinibilir M, Kideys AE, Tarkan AN, Yilmaz IN (2008) Annual cycle of zooplankton abundance and species composition in Izmit Bay (the northeastern Marmara Sea). Estuar Coast Shelf Sci 78:739-747 https://doi.org/10.1016/j.ecss.2008.02.013
  40. Jung Y, Kang H-K, Kang YJ (2004) In situ egg production rate of the planktonic copepod Acartia steueri in Ilkwang Bay, southeastern coast of Korea. J Plankton Res 26:1547-1553 https://doi.org/10.1093/plankt/fbh126
  41. Kang H-K, Kang YJ (2005) Production of Acartia steueri (Copepoda: Calanoida) in Ilkwang Bay, southeastern coast of Korea. J Oceanogr 61:327-334 https://doi.org/10.1007/s10872-005-0043-1
  42. Keister JE, Houde ED, Brietburg DL (2000) Effects of bottomlayer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar Ecol Prog Ser 205:43-59 https://doi.org/10.3354/meps205043
  43. Kimmerer WJ, Mckinnon AD (1987) Growth, motality and secondary production of the copepod Acartia tranteri in West-emport Bay, Australia. Limnol Oceanogr 32:14-28 https://doi.org/10.4319/lo.1987.32.1.0014
  44. Kimor B (1979) Predation by Noctiluca miliaris Souriray on Acartia tonsa Dana eggs in the inshore waters of southern California. Limnol Oceanogr 24:568-572 https://doi.org/10.4319/lo.1979.24.3.0568
  45. Kirchner M, Sahling G, Uhling G, Gunkel W, Klings KW (1996) Does the red tide forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia 81:45-55
  46. Lee KW, Hong GH, Yang DB, Lee SH (1981) Seawater quality and red tides in Jinhae Bay: I. relationships between water quality parameters and red tides. J Oceanol Soc Korea 16:43-48
  47. Marcus NH (2001) Zooplankton: responses to and consequences of hypoxia. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems, Coastal & Estuarine Studies 58, American Geophysical Union, Washington DC, pp 49-60
  48. Miyaguchi H, Fujiki T, Kikuchi T, Kuwahara VS, Toda T (2006) Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J Plankton Res 28:313-324
  49. Montani S, Pithakpol S, Tada K (1998) Nutrient regeneration in coastal seas by Noctiluca scintillans, a red tidecausing dinoflagellate. J Mar Biotechnol 6:224-228
  50. Nakamura Y (1998) Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory studies. J Plankton Res 20:1711-1720 https://doi.org/10.1093/plankt/20.9.1711
  51. Nomura H, Aihara K, Ishimaru T (2007) Feeding of the chaetognath Sagitta crassa Tokioka in heavily eutrophicated Tokyo Bay, Japan. Plankton Benthos Res 2:120-127 https://doi.org/10.3800/pbr.2.120
  52. Okaishi T, Nishio Y (1976) Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris. Bull Plankt Soc Japan 23:25-30
  53. Omorii M, Ikeda T (1984) Methods in marine zooplankton ecology. John Wiley & Sons, New York, 25 p
  54. Onoue Y, Shimode S, Toda T, Kikuchi T (2006) Reproductive strategy of Acartia steueri in Sagami Bay, Japan. Coast Mar Sci 30:353-359
  55. Ostrovskii A, Fukudome K, Yoon JH, Takikawa T (2009) Variability of the volume transport through the Korea/Tsushima Strait as inferred from the shipborne acoustic Doppler current profiler observations in 1997-2007. Oceanology 49:338-349 https://doi.org/10.1134/S0001437009030060
  56. Park JS (1970) The Chaetognaths of Korea waters. NFRDI, Busan, 174 p
  57. Parson TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 p
  58. Pearre S Jr (1981) Feeding by Chaetognatha: energy balance and importance of various components of the diet of Sagitta elegans. Mar Ecol Prog Ser 5:45-54 https://doi.org/10.3354/meps005045
  59. Purcell JE, Decker MB (2005) Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987-2000. Limnol Oceanogr 50:376-387 https://doi.org/10.4319/lo.2005.50.1.0376
  60. Quevedo M, Gonzalez-Quiros R, Anadon R (1999) Evidence of heavy predation by Noctiluca scintillans on Acartia clausi (Copepoda) eggs off the central Cantabrian coast (NW Spain). Oceanol Acta 22:127-131 https://doi.org/10.1016/S0399-1784(99)80039-5
  61. Richardson AJ, Shoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 306:1609-1612
  62. Seung YH, Kim YJ, Yoon JH (2007) Seasonal Characteristics of the Tsushima Current in the Tsushima/Korea Strait Obtained by a Fine-Resolution Numerical Model. Cont Shelf Res 27:117-133 https://doi.org/10.1016/j.csr.2006.09.005
  63. Shannon CE, Weaver W (1963) The mathematical theory of communication. Urbana, University of Illinois Press, 117 p
  64. Smayda TJ (1997) What is a bloom? A commentary. Limnol Oceanogr 42:1132-1136 https://doi.org/10.4319/lo.1997.42.5_part_2.1132
  65. Soh HY, Jeong HG (2003) Spatio-temporal distribution of the genus Acartia (Copepoda: Calanoida) in the Southwestern waters of Korea. Korean J Environ Biol 21:422-427
  66. Sommer F, Hansen T, Feuchtmayr H, Santer B, Tokle N, Sommer U (2003) Do calanoid copepods suppress appendicularians in the coastal ocean? J Plankton Res 25:869-871 https://doi.org/10.1093/plankt/25.7.869
  67. Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891-908 https://doi.org/10.1093/plankt/12.5.891
  68. ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: software for canonical community ordination (version 4.5). Microcomputer Power (Ithaca NY), USA, 500 p
  69. Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255-266
  70. Ueda H (1982) Zooplankton investigations in Shijiki Bay II. Zooplankton communities from September 1975 to April 1976, with special reference to distributional characteristics of inlet copepods. Bull Seikai Reg Fish Res Lab 58:1-22
  71. Uye S (1981) Fecundity studies of neritic calanoid copepods Acartia clausi Giesbrecht and A. steueri Smimov: a simple empirical model of daily egg production. J Exp Mar Biol Ecol 50:255-271 https://doi.org/10.1016/0022-0981(81)90053-8
  72. Uye S (1982) Population dynamics and production of Acartia clausi Giesbrecht (Copepoda: Calanoida) in inlet waters. J Exp Mar Biol Ecol 57:55-83 https://doi.org/10.1016/0022-0981(82)90144-7
  73. Uye S, Shimazu T, Yamamuro M, Ishitobi Y, Kamiya H (2000) Geographic and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji-Ohashi River- Lake Nakaumi brackish-water system, Japan. J Mar Sys 26:193-207 https://doi.org/10.1016/S0924-7963(00)00054-3
  74. Vargas CA, Gonzalez HE (2004) Plankton community structure and carbon cycling in a coastal upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and appendicularians. Aquat Microb Ecol 34:151-164 https://doi.org/10.3354/ame034151
  75. Yilmaz IN, Okus E, Yuksek A (2005) Evidences for influence of a heterotrophic dinoflagellate (Noctiluca scintillans) on zooplankton community structure in a highly stratified basin. Estuar Coast Shelf Sci 64:475-485 https://doi.org/10.1016/j.ecss.2005.03.011
  76. Yoo KI, Kim SW (1987) Seasonal distribution of marine cladocerans in Chinhae Bay, Korea. J Oceanol Soc Kor 22:80-86
  77. Yoon SH, Choi JK (2003) Seasonal changes in zooplankton community in the coastal waters off Incheon. J Korean Soc Oceanogr 38:111-121
  78. Yoon WD, Yang JY, Shim MB, Kang HK (2008) Physical processes influencing the occurrence of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) around Jeju Island, Korea. J Plankton Res 30:251-260

Cited by

  1. Potential Threat of Microplastics to Zooplanktivores in the Surface Waters of the Southern Sea of Korea vol.69, pp.3, 2015, https://doi.org/10.1007/s00244-015-0210-3
  2. Seasonal and interannual variation in mesozooplankton community structure off Tongyeong, southeastern coast of Korea, from 2011 to 2014 vol.52, pp.1, 2017, https://doi.org/10.1007/s12601-017-0005-8
  3. Environmental Factors Affecting Zooplankton Community in Gwangyang Bay vol.35, pp.4, 2017, https://doi.org/10.11626/KJEB.2017.35.4.631