DOI QR코드

DOI QR Code

Antioxidant Activity of Flavonoids Isolated from Vitex rotundifolia

순비기나무(Vitex rotundifolia)로부터 분리한 플라보노이드 성분의 항산화 활성

  • Kim, You-Ah (Natural Compounds Bank Establishment Department, DGOM) ;
  • Lee, Jung-Im (Division of Marine Environment & Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Hong, Joo-Wan (Division of Marine Environment & Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Jung, Myoung-Eun (Division of Marine Environment & Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Seo, Young-Wan (Division of Marine Environment & Bioscience, College of Ocean Science and Technology, Korea Maritime University)
  • 김유아 ((재)대구경북한방산업진흥원 천연물물질은행구축사업단) ;
  • 이정임 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 홍주완 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 정명은 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 서영완 (한국해양대학교 해양과학기술대학 해양환경.생명과학부)
  • Received : 2011.08.17
  • Accepted : 2011.09.07
  • Published : 2011.09.30

Abstract

The aim of this investigation was to evaluate antioxidant activity of crude extracts from the halophyte Vitex rotundifolia, their solvent fractions, and isolated compounds (1-3). Antioxidant capacity was determined by measuring DPPH radical, and authentic $ONOO^-$ and $ONOO^-$ generated from 3- morpholinsydnonimine (SIN-1) in vitro as well as degree of occurrence of intracellular ROS, NO and GSH in mouse macrophage Raw 264.7 cells. From comparative analysis, MeOH extract, n-BuOH, and 85% aq. MeOH solvent fractions showed significant antioxidant effect in DPPH radical and $ONOO^-$ assay systems. Activity-guided purification of n-BuOH and 85% aq. MeOH fractions led to the isolation of flavonoids 1-3. Among them, compound 1 exhibited excellent antioxidant effect in all bioassay systems tested. On the other hand, compounds 2 and 3 revealed potent inhibitory effect against $ONOO^-$ generated from SIN-1, comparable with the positive control penicillamine.

Keywords

References

  1. Ahmad VU, Khan MA, Baqai FT, Tareen RB (1995) Santoflavone, a 5-Deoxyflavonoid from Achillea santolina. Phytochemistry 38:1305-1307 https://doi.org/10.1016/0031-9422(94)00785-R
  2. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915-7922 https://doi.org/10.1073/pnas.90.17.7915
  3. Blois MS (1998) Antioxidant determinations by the use of a stable free radical. Nature 26:1199-1200
  4. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749-760 https://doi.org/10.1016/S0891-5849(96)00351-6
  5. Choi JK, Cha DS, Lee YJ, Ko SH, Park HJ, Lee SY, Choi JH, Jeon H (2010) Effects of Vitex rotundifolia on radical scavenging and nitric oxide production. Oriental Pharm Exp Med 10:51-58 https://doi.org/10.3742/OPEM.2010.10.2.051
  6. Choi JS, Chung HY, Kang SS, Jung MJ, Kim JW, No JK, Jung HA (2002) The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother Res 16:232-235 https://doi.org/10.1002/ptr.828
  7. Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337-353 https://doi.org/10.1016/S0024-3205(99)00120-4
  8. Green LC, Wagner DA, Logowski GJ, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131-138 https://doi.org/10.1016/0003-2697(82)90118-X
  9. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203-210 https://doi.org/10.1016/0022-1759(89)90397-9
  10. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572-584 https://doi.org/10.1016/S0955-2863(02)00208-5
  11. Iinuma M, Matsuura S, Kusuda K (1980) $^{13}C$-nuclear magnetic resonance (NMR) spectral studies on polysubstituted flavonoids. I. $^{13}C$-NMR spectra of flavones. Chem Pharm Bull 28:708-716 https://doi.org/10.1248/cpb.28.708
  12. Joo EY, Lee YS, Kim NW (2007) Polyphenol compound contents and physiological activities in various extracts of the Vitex rotundifolia stems. J Korean Soc Food Sci Nutr 36:813-818 https://doi.org/10.3746/jkfn.2007.36.7.813
  13. Jung MJ, Chung HY, Choi JS (2001) Antioxidant activity of roasted defatted perilla seed. Nat Prod Sci 7:72-75
  14. Kawazoe K, Yutani A, Takaishi Y (1999) Aryl naphthalenes norlignans from Vitex rotundifolia. Phytochemistry 52: 1657-1659 https://doi.org/10.1016/S0031-9422(99)00405-7
  15. Kim YA, Lee JI, Kim H, Kong CS, Nam TJ, Seo Y (2009) Antiproliferative effect of extracts, fractions and compound from Vitex rotundifolia on Human Cancer Cells. J Appl Biol Chem 52:180-186 https://doi.org/10.3839/jabc.2009.031
  16. Kim DW (2009) Antioxidative Constituents from the Twigs of Vitex rotundifolia. Biomol Ther 17:412-417 https://doi.org/10.4062/biomolther.2009.17.4.412
  17. Kirschvink N, de Moffarts B, Lekeux P (2008) The oxidant/antioxidant equilibrium in horses. Vet J 177:178-191 https://doi.org/10.1016/j.tvjl.2007.07.033
  18. Ko WG, Kang TH, Lee SJ, Kim NY, Kim YC, Sohn DH, Lee BH (2000) Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food Chem Toxicol 38:861-865 https://doi.org/10.1016/S0278-6915(00)00079-X
  19. Ko WG, Kang TH, Lee SJ, Kim YC, Lee BH (2001) Rotundifuran, a labdane type diterpene from Vitex rotundifolia, induces apoptosis in human myeloid leukaemia cells. Phytother Res 15:535-537 https://doi.org/10.1002/ptr.743
  20. Kondo Y, Sugiyama K, Nozoe S (1986) Studies on the constituents of Vitex rotundifolia L. fil. Chem Pharm Bull 34:4829-4832 https://doi.org/10.1248/cpb.34.4829
  21. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16:149-156 https://doi.org/10.1016/0891-5849(94)90138-4
  22. Lee YN (2002) In Flora of Korea. Kyo-Hak Publishing Co. Ltd., Seoul, 241 p
  23. Liu YH, Lin SY, Lee CC, Hou WC (2008) Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid. Food Chem 109:159-166 https://doi.org/10.1016/j.foodchem.2007.12.055
  24. Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, Menichini1 F (2007) Inhibition of Angiotensin Converting Enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res 21:32-36 https://doi.org/10.1002/ptr.2008
  25. Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N (2000) A novel fluorescent probe diphenyl-1- pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137-140 https://doi.org/10.1016/S0014-5793(00)01587-8
  26. Ono M, Ito Y, Kubo S, Nohara T (1997) Two new iridoids from Viticis trifoliae fructus (Fruit of Vitex rotundifolia L.). Chem Pharm Bull 45:1094-1096 https://doi.org/10.1248/cpb.45.1094
  27. Ono M, Ito Y, Nohara T (1998) A labdane diterpene glycoside from fruit of Vitex rotundifolia. Phytochemistry 48:207-209 https://doi.org/10.1016/S0031-9422(97)00863-7
  28. Ono M, Yamamoto M, Masuoka C, Ito Y, Yamashita M, Nohara T (1999) Diterpenes from the Fruits of Vitex rotundifolia. J Nat Prod 62:1532-1537 https://doi.org/10.1021/np990204x
  29. Ono M, Sawamura H, Ito Y, Mizuki K, Nohara T (2000) Diterpenoids from the fruits of Vitex trifolia. Phytochemistry 55:873-877 https://doi.org/10.1016/S0031-9422(00)00214-4
  30. Ono M, Ito Y, Nohara T (2001a) Four new halimane-type diterpenes, vitetrifolins D-G, from the fruit of Vitex trifolia. Chem Pharm Bull 49:1220-1222 https://doi.org/10.1248/cpb.49.1220
  31. Ono M, Yamamoto M, Yanaka T, Ito Y, Nohara T (2001b) Ten new labdane-type diterpenes from the fruit of Vitex rotundifolia. Chem Pharm Bull 49:82-86 https://doi.org/10.1248/cpb.49.82
  32. Ono M, Yanaka T, Yamamoto M, Ito Y, Nohara T (2002) New diterpenes and norditerpenes from the fruits of Vitex rotundifolia. J Nat Prod 65:537-541 https://doi.org/10.1021/np0105331
  33. Park CM, Park JY, Song YS (2010) Luteolin and chicoric acid, two major constituents of dandelion Leaf, inhibit nitric oxide and lipid peroxide formation in lipopolysaccharide-stimulated RAW 264.7 cells. J Food Sci Nutr 15:92-97 https://doi.org/10.3746/jfn.2010.15.2.092
  34. Peterson J, Dwyer J (1998) Flavonoids: dietary occurrence and biochemical activity. Nutr Res 18:1995-2018 https://doi.org/10.1016/S0271-5317(98)00169-9
  35. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035-1042 https://doi.org/10.1021/np9904509
  36. Poot M, Verkerk A, Koster JF, Jongkind JF (1986) De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim Biophys Acta 883:580-584 https://doi.org/10.1016/0304-4165(86)90300-4
  37. Rahman AU, Ahmed D, Choudhary MI, Turkoz S, Sener B (1988) Chemical constituents of Buxus sempervirens. Planta Med 54:173-174 https://doi.org/10.1055/s-2006-962384
  38. Shin TY, Kim SH, Lim JP, Suh ES, Jeong HJ, Kim BD, Park EJ, Hwang WJ, Rye DG, Baek SH, An NH, Kim HM (2000) Effect of Vitex rotundifolia on immediatetype allergic reaction. J Ethnopharmacol 72:443-450 https://doi.org/10.1016/S0378-8741(00)00258-0
  39. Wang HY, Cai B, Cui CB, Zhang DY, Yang BF (2005) Vitexicarpin, a flavonoid from Vitex trifolia L., induces apoptosis in K562 cells via mitochondria-controlled apoptotic pathway. Yao Xue Xue Bao 40:27-31
  40. Yeeh Y, Kang SS, Chung HG, Chung MS (1996) Genetic and clonal diversity in Korean populations of Vitex rotundifolia (Verbenaceae). J Plant Research 109:161-168 https://doi.org/10.1007/BF02344541
  41. Yoshioka T, Inokuchi T, Fujioka S, Kimura Y. (2004) Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z Naturforsch 59:509-514
  42. You KM, Son KH, Chang HW, Kang SS, Kim HP (1998) Vitexicarpin, a flavonoid from the fruits of Vitex rotundifolia, inhibits mouse lymphocyte proliferation and growth of cell lines in vitro. Planta Med 64:546-550 https://doi.org/10.1055/s-2006-957511
  43. Zhang S, Yang X, Coburn RA, Morris ME (2005) Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol 70:627-639 https://doi.org/10.1016/j.bcp.2005.05.017

Cited by

  1. Isolation of a New Labdane-type Diterpene from Vitex rotundifolia vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3840
  2. Chemical Constituents of the Halophyte Vitex rotundifolia vol.58, pp.6, 2014, https://doi.org/10.5012/jkcs.2014.58.6.686