DOI QR코드

DOI QR Code

Changes on Growth, Photosynthesis and Pigment contents of the Maackia amurensis and Viburnum opulus var. calvescens under Enhanced Temperature and CO2 Concentration

온도와 CO2 농도 증가에 따른 다릅나무와 백당나무의 생장, 광합성 및 광색소 함량 변화

  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Gil-Nam (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김두현 (국립산림과학원 산림유전자원부) ;
  • 김길남 (국립산림과학원 산림유전자원부) ;
  • 이재천 (국립산림과학원 산림유전자원부)
  • Received : 2011.08.15
  • Accepted : 2011.09.20
  • Published : 2011.09.30

Abstract

The impacts of elevated temperature and $CO_2$ were studied on the seedlings of Maackia amurensis and Viburnum opulus var. calvescens. The seedlings were grown in controlled-environment growth chambers with four combinations of temperature and $CO_2$ treatments: $25^{\circ}C$ + ambient $CO_2$ (400 ppm), $25^{\circ}C$ + elevated $CO_2$ (800 ppm), $30^{\circ}C$ + ambient $CO_2$ (400 ppm), and $30^{\circ}C$ + elevated $CO_2$ (800 ppm). Under elevated temperature and $CO_2$ concentration, the dry weight decreased in seedlings of M. amurensis, but increased in seedlings of V. opulus var. calvescens. In addition, the shoot to root (S/R) ratio in M. amurensis reduced but that of V. opulus var. calvescens increased under elevated $CO_2$ concentration. The S/R ratios of two tree species increased under higher temperature. M. amurensis represented lower carboxylation efficiency under higher temperature and $CO_2$ concentration and that of V. opulus var. calvescens showed lower values under the only higher temperature. Photosynthetic pigment content of in the leaves of M. amurensis was lower under higher $CO_2$ concentration and higher under the increase of temperature, but that of V. V. opulus var. calvescens decreased according to the increase of temperature. Chlorophyll a/b ratios of M. amurensis and V. V. opulus var. calvescens decreased obviously with the increase of $CO_2$ concentration and temperature, respectively. In conclusion, the growth and physiological responses under the environmental changes such as temperature and $CO_2$ concentration depend on the tree species. Therefore, more studies are needed to predict the response of each tree species against the climate changes.

본 연구는 최근 전 지구적으로 문제시 되고 있는 기후변화와 관련하여, 우리나라에서의 대기 중 $CO_2$ 농도 증가와 평균 온도 상승에 따른 수목의 생장 및 생리 반응의 변화를 예측하고자 실시되었다. 온도와 $CO_2$ 농도 증가 하에서 다릅나무의 건중량은 감소하였으나, 백당나무의 건중량은 증가하였다. 또한, $CO_2$ 농도 증가는 다릅나무의 지상부와 지하부의 비(S/R)를 감소시킨 반면, 백당나무의 지상부와 지하부의 비는 증가시켜, 두 수종의 생장 반응은 서로 상반되는 결과를 나타냈다. 그러나 두 수종 모두 온도 증가에 의해 S/R율이 증가하였다. 탄소고정효율은 다릅나무의 경우, 온도와 $CO_2$ 농도 증가에 의해 뚜렷하게 감소하였으나, 백당나무는 온도 증가로 탄소고정효율이 감소한 반면, $CO_2$ 증가는 뚜렷한 효과를 나타내지 않았다. 광색소함량은 다릅나무의 경우, $CO_2$ 농도가 증가하면서 모든 광색소 함량이 감소하였다. 그러나 백당나무에서는 뚜렷한 변화가 없었다. 한편 온도 증가는 다릅나무의 잎내 광색소 함량을 크게 증가 시켰으나, 백당나무는 반대로 광색소 함량이 모두 감소하였다. 다릅나무의 엽록소 a/b 비는 $CO_2$ 농도 증가로 뚜렷하게 감소하였으며, 백당나무는 온도 증가로 엽록소 a/b 비가 감소하였다. 결론적으로 온도와 $CO_2$ 농도 변화에 따른 수목의 생장 및 생리적 반응은 처리 농도 또는 기간에 따라 큰 차이를 나타내며, 공시재료의 연령에도 큰 영향을 받는다. 본 연구는 1년생의 어린 묘목을 대상으로 단기간 온도와 $CO_2$ 농도 변화에 대한 반응을 분석한 것이므로, 장기적인 환경 변화에 대한 수목의 적응 특성은 예측하기 어렵다. 따라서 미래의 기후변화에 대한 수목의 반응을 정확한 예측을 위해서는 장기적인 환경 변화 조건하에서 다각적인 연구가 이루어져야 한다. 또한 환경 변화에 따른 반응은 수종에 따라 큰 차이를 나타내므로, 기후변화에 따른 수목의 반응을 예측하기 위해서는 우리나라 주요 수종 및 기후변화에 민감한 수종들을 대상으로 지속적인 연구가 이루어져야 한다.

Keywords

References

  1. Callaway, R. M., E. H. Delucia, E. M. Thomas, and W. H. Schlesinger, 1994: Compensatory responses of $CO_2$ exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different $CO_2$ and temperature regimes. Oecologia 98, 159-166. https://doi.org/10.1007/BF00341468
  2. Caemmerer, S. von and G. D. Farquhar, 1981: Some relationships between the biochemistry of photosynthesis and the gas exchanges of leaves. Planta 153, 376-387. https://doi.org/10.1007/BF00384257
  3. Ceulemans, R. and M. Mousseau, 1994: Effects of elevated atmospheric $CO_2$ on woody plants. New Phytologist 127, 425-446. https://doi.org/10.1111/j.1469-8137.1994.tb03961.x
  4. Eamus, D. and P. G. Jarvis, 1989: The direct effects of increase in the global atmospheric $CO_2$ concentration on natural and commercial temperate trees and forests. Advances in Ecological Research 19, 1-55. https://doi.org/10.1016/S0065-2504(08)60156-7
  5. Eamus, G. A. and C. A. Berryman, 1995: Photosynthetic responses to temperature, light flux-density, $CO_2$ concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under $CO_2$ enrichment. Environmental Pollution 90, 41-49. https://doi.org/10.1016/0269-7491(94)00088-U
  6. Farquhar, G. D., von S. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149, 78-90. https://doi.org/10.1007/BF00386231
  7. Ghannoum, O., N. G. Phillips, J. P. Conroy, R. A. Smith, R. D. Attard, R. Woodfield, B. A. Logan, J. D. Lewis, and D. T. Tissue, 2010: Exposure to preindustrial, current and future atmospheric $CO_2$ and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16, 303-319. https://doi.org/10.1111/j.1365-2486.2009.02003.x
  8. Hamid, N., F. Jawaid, and D. Amin, 2009: Effect of short-term exposure to two different carbon dioxide concentrations on growth and some biochemical parameters of edible beans (Vigna radiate and Vigna unguiculata). Pakistan Journal of Botany 41, 1831-1836.
  9. Han, S. H. and D. H. Kim, 2009: Determination of ozone tolerance on environmental tree species using standard index. Korean Journal of Agricultural and Forest Meteorology 11, 3-12. https://doi.org/10.5532/KJAFM.2009.11.1.003
  10. Han, S. H., D. H. Kim, J. C. Lee, and P. G. Kim, 2009: Effects of fertilization on physiological parameters in American sycamore (Platanus occidentalis) during ozone stress and recovery phase. Journal of Ecology and Field Biology 32, 149-158. https://doi.org/10.5141/JEFB.2009.32.3.149
  11. Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560.
  12. Hikosaka, K. and I. Terashima, 1995: A model of the acclimation of photosynthesis in the leaves of C3 plant to sun and shade with respect to nitrogen use. Plant, Cell & Environment 18, 605-618. https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  13. Hiscox, J. D. and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334. https://doi.org/10.1139/b79-163
  14. Iglesias, J. D., A. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citurs plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131. https://doi.org/10.1016/j.plaphy.2006.03.007
  15. IPCC, 2007: Climate change 2007: Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
  16. Kim, D. H., S. H. Han, J. J. Ku, K. Y. Lee, and P. G. Kim, 2008: Physiological and biochemical responses to ozone toxicity in five species of genus Quercus seedlings. Korean Journal of Agricultural and Forest Meteorology 10, 47-57. https://doi.org/10.5532/KJAFM.2008.10.2.047
  17. Kim, H. R. and Y. H. You, 2010: Effects of elevated $CO_2$ concentration and increased temperature on leaf relatedphysiological responses of Phytolacca insularis (native species) and Phytolacca Americana (invasive species). Journal of Ecology and Field Biology 33, 195-204. https://doi.org/10.5141/JEFB.2010.33.3.195
  18. Kim, P. G. and E. J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133.
  19. Koike, T., T. T. Lei, T. C. Maximov, R. Tabuchi, K. Takahashi, and B. I. Ivanov, 1996: Comparison of the photosynthetic capacity of Siberian and Japanese birch seedlings grown in elevated $CO_2$ and temperature. Tree Physiology 16, 381-385. https://doi.org/10.1093/treephys/16.3.381
  20. Lee, J. C., C. Y, Oh, S. H. Han, and P. G. Kim. 2006: Photosynthetic inhibition in leaves of Ailanthus altissima under $O_3$ fumigation. Journal of Ecology and Field Biology 29, 41-47. https://doi.org/10.5141/JEFB.2006.29.1.041
  21. Lewis, J. D., M. Lucash, D. Olszyk, and D. T. Tingey, 2001: Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated $CO_2$ and temperature. Plant Cell & Environment 24, 539-548. https://doi.org/10.1046/j.1365-3040.2001.00700.x
  22. Long, S. P., 1991: Modification of the response of photosynthetic productivity to rising temperature by atmospheric $CO_2$ concentrations: Has its importance been underestimated? Plant Cell & Environment 14, 729-739. https://doi.org/10.1111/j.1365-3040.1991.tb01439.x
  23. Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort, 2004: Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591-628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
  24. Luomala, E. M., K. Laitinen, S. Kellomaki, and E. Vapaavuori, 2003: Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated $CO_2$ and elevated temperature. Plant Cell & Environment 26, 645-660. https://doi.org/10.1046/j.1365-3040.2003.01000.x
  25. Mooney, H. A., M. Kiippers, G. Koch, J. Gorham, C. Chu, and W. E. Winner, 1988: Compensating effects to growth of carbon partitioning changes in response to $SO_2-induced$ photosynthetic reduction in radish. Oecologia 75, 502-506. https://doi.org/10.1007/BF00776411
  26. Mooney, H. A., B. G. Drake, R. J. Luxmoore, W. C. Oechel, and L. F. Pitelka, 1991: Prediction ecosystem responses to elevated $CO_2$ concentrations. Bioscience 41, 96-104. https://doi.org/10.2307/1311562
  27. Morison, J. I. L. and D. W. Lawlor, 1999: Interactions between increasing $CO_2$ concentration and temperature on plant growth. Plant Cell & Environment 22, 659-682. https://doi.org/10.1046/j.1365-3040.1999.00443.x
  28. Norby, R. and Y. Luo, 2004: Evaluating ecosystem responses to rising atmospheric $CO_2$ and global warming in a multi-factor world. New Phytologist 162, 281-293. https://doi.org/10.1111/j.1469-8137.2004.01047.x
  29. O'neill, E. G., R. J. Luxmoore, and R. J. Norby, 1987: Elevated atmospheric $CO_2$ effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations of Liriodendron tulipifera L. Plant and Soil 104, 3-11. https://doi.org/10.1007/BF02370618
  30. Stirling, C. M., M. Heddell_Cowie, M. L. Jones, T. W. Ashenden, and T. H. Sparks, 1998: Effects of elevated $CO_2$ and temperature on growth and allometry of five native fast-growing annual species. New Phytologist 140, 343-354. https://doi.org/10.1046/j.1469-8137.1998.00273.x
  31. Teskey, R. O., 1997: Combined effects of elevated $CO_2$ and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell & Environment 20, 373-380. https://doi.org/10.1046/j.1365-3040.1997.d01-75.x
  32. Tissue, D. T., R. B. Thomas, and B. R. Strain, 1993: Longterm effects of elevated $CO_2$ and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant Cell & Environment 16, 859-865. https://doi.org/10.1111/j.1365-3040.1993.tb00508.x
  33. Tjoelker, M. G., J. Oleksyn, and P. B. Reich, 1998: Temperature and ontogeny mediate growth response to elevated $CO_2$ in seedlings of five boreal tree species. New Phytologist 140, 197-210. https://doi.org/10.1046/j.1469-8137.1998.00272.x

Cited by

  1. Stem bark of Maackia amurensis Extract according to extraction Solvent vol.31, pp.3, 2016, https://doi.org/10.6116/kjh.2016.31.3.43.
  2. Emission and heat recovery characteristics of combustor-type CO2 generator with an after-treatment device and regenerative heating device for greenhouses vol.29, pp.1, 2015, https://doi.org/10.1007/s12206-014-1247-3
  3. Emission and heat recovery characteristics of heat recovery and combustor-type CO2generator for greenhouses vol.18, pp.4, 2014, https://doi.org/10.9726/kspse.2014.18.4.052